EPJ D North American Regional Editor
- Details
- Published on 08 January 2015
New Editors-in-Chief for EPJ D
- Details
- Published on 08 January 2015
December 31st, 2014 marked the end of the terms of appointment of two of the Editors-in-Chief for EPJD, Professor Kurt Becker (New York University, USA) and Professor Nigel Mason (Open University, UK). Profs Becker and Mason have served as Editors-in-Chief since 2009, representing the fields of plasma physics and atomic and molecular physics respectively. Under their leadership the journal has seen substantial growth and development across a broad range of topical areas, with special issues published in diverse fields including microplasmas, electron-positron collision physics, cluster physics and radiation biodamage. The publishers would like to express their sincere appreciation to Kurt and Nigel for their service to the journal and the wider community as Editors-in-Chief over the past five years.
We are delighted to announce the appointment of their successors, starting from 1st January 2015.
EPJ D Colloquium - Quantum optics with quantum dots
- Details
- Published on 22 December 2014

The aim of quantum information research is to harness the distinctive features of quantum physics, especially superposition and entanglement, to enhance the functionality and power of information and communication technologies. It has been a thriving interdisciplinary field of research for the last thirty years, extending from the fundamental investigation of quantum phenomena to the experimental implementation of disruptive quantum-enabled technologies.
EPJ D Highlight - Atoms crystallised by light for precision measurement
- Details
- Published on 26 November 2014

A new study focuses on the collective dynamics of illuminated atoms coupled to photons travelling in a nanofiber
Theoretical physicists have uncovered the existence of self-organised dynamics of atoms, bound by light into a crystal, with long range atom-atom interactions. These findings were recently published in EPJ D by Daniela Holzmann from the University of Innsbruck, Austria, and colleagues. This approach could, among others, help to better understand the process of crystallisation in new materials, and help implement efficient photon storage and precision measurements. Applied to ultra-cold atoms, it could aid in the study of long-distance interactions in the quantum dynamics of one-dimensional non- conventional materials, referred to as exotic matter.
EPJ D Colloquium - Multiscale approach to the physics of radiation damage with ions
- Details
- Published on 24 November 2014

In this EPJ D Colloquium, the authors review the multiscale approach to the assessment of biodamage that results from the irradiation of biological media with ions. This approach is explained in depth and compared to other approaches. The ion propagation processes that take place in the medium concurrent with ionisation and excitation of molecules, transport of secondary products, dynamics of the medium, and biological damage, take place on a number of different temporal, spatial and energy scales. The multiscale approach, a physical phenomenon-based analysis of the scenario that leads to radiation damage, has been designed to consider all relevant effects on a variety of scales and to enable quantitative assessment of biological damage as a result of irradiation with ions.
EPJ D Colloquium - Laser selective spectromicroscopy of myriad single molecules: tool for far-field multicolour materials nanodiagnostics
- Details
- Published on 14 November 2014

In this EPJ D Colloquium, the authors discuss the main principles, achievements and perspectives in the fields of highly-parallel luminescence spectroscopy and the imaging of single molecules (SMs) in transparent solids. Special attention is given to SM detection at low temperatures, where ultranarrow and bright zero-phonon lines (ZPLs) can be generated by emitting centres for observation.
EPJ D Highlight - Plasma: Casimir and Yukawa mesons
- Details
- Published on 29 October 2014

The Casimir electromagnetic fluctuation forces across plasmas are analogous to so-called weak nuclear interaction forces, as new findings show
A new theoretical work establishes a long-sought-after connection between nuclear particles and electromagnetic theories. Its findings suggests that there is an equivalence between generalised Casimir forces and what are referred to as weak nuclear interactions between protons and neutrons. The Casimir forces are due to the quantisation of electromagnetic fluctuations in vacuum, while the weak nuclear interactions are mediated by subatomic scale particles, originally called mesons by Yukawa. These findings by Barry Ninham from the Australian National University, in Canberra, and European colleagues, have now been published in EPJ D.EPJ D Highlight - Quantum holograms as atomic scale memory keepsake
- Details
- Published on 15 October 2014

A new theoretical study demonstrates for the first time that quantum holograms could be a candidate for becoming quantum information memory
Russian scientists have developed a theoretical model of quantum memory for light, adapting the concept of a hologram to a quantum system. These findings are included in study just published in EPJ D, by Anton Vetlugin and Ivan Sokolov from St. Petersburg State University in Russia. The authors demonstrate for the first time, that it is theoretically possible to retrieve, on demand, a given portion of the stored quantised light signal of a holographic image—set in a given direction in a given position in time sequence.
EPJ D Colloquium: Recent positron-atom cross section measurements and calculations
- Details
- Published on 14 October 2014
In this EPJ D colloquium paper, the authors review a cross-section of recent results relating to low-energy positron scattering from atomic targets, and present a comparison of the latest measurements and calculations for positron collisions with the noble gases, together with a brief update on the newest studies addressing other atomic targets. In particular, they provide an overview of the work that has been done in examining elastic scattering, positronium formation, direct and total ionisation, as well as total scattering, at typical energies ranging from 0.1 eV to a few hundred eV.
EPJ D Highlight - Atmospheric chemistry hinges on better physics model
- Details
- Published on 29 September 2014

Improved theoretical model of photoabsorption of nitrous oxide matters because its by-product, nitric oxide, is involved in the catalytic destruction of stratospheric ozone
New theoretical physics models could help us better grasp the atmospheric chemistry of ozone depletion. Indeed, understanding photoabsorption of nitrous oxide (N2O)-- a process which involves the transfer of the energy of a photo to the molecule--matters because a small fraction of N2O reacts with oxygen atoms in the stratosphere to produce, among other things, nitric oxide (NO). The latter participates to the catalytic destruction of ozone (O3). Now, new theoretical work unveils the actual dynamic of the photoabsorption of nitrous oxide (N2O) molecules. These findings by Mohammad Noh Daud from the University of Malaya, Kuala Lumpur in Malaysia, have just been published in EPJ D. The work has led to new calculations of the probability of an absorption process taking place, also referred to as absorption cross section, which confirm experimental results.