https://doi.org/10.1051/epjn/2021027
Regular Article
Impact of H in H2O thermal scattering data on depletion calculation: k∞, nuclide inventory and decay heat
Reactor Physics and Thermal hydraulic Laboratory, Paul Scherrer Institut,
Villigen,
Switzerland
* e-mail: dimitri-alexandre.rochman@psi.ch
Received:
20
September
2021
Received in final form:
15
November
2021
Accepted:
24
November
2021
Published online: 21 December 2021
The impact of the H in H2O thermal scattering data are calculated for burnup quantities, considering models of a UO2 pincell with DRAGON and SERPENT. The Total Monte Carlo method is applied, where the CAB model parameters are randomly varied to produce sampled (random) LEAPR input files for NJOY. A large number of burnup calculations is then performed, based on the random thermal scattering data. It is found that the impact on k∞ is relatively small (less than 35 pcm), as for nuclide inventory (less than 1% at 50 MWd/kgU) and for decay heat (less than 0.4%). It is also observed that the calculated probability density functions indicate strong non-linear effects.
© D. Rochman et al., Published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.