https://doi.org/10.1051/epjn/2021008
Regular Article
Nuclear data assimilation, scientific basis and current status
1 Institute for Radioprotection and Nuclear Safety, Fontenay-aux-Roses, France
2
Alternative Energies and Atomic Energy Commission, CEA DAM DIF, F-91297 Arpajon, France
3
The University of Tennessee, Knoxville, USA
* e-mail: evgeny.ivanov@irsn.fr
Received:
9
November
2020
Received in final form:
24
March
2021
Accepted:
9
April
2021
Published online: 6 May 2021
The use of Data Assimilation methodologies, known also as a data adjustment, liaises the results of theoretical and experimental studies improving an accuracy of simulation models and giving a confidence to designers and regulation bodies. From the mathematical point of view, it approaches an optimized fit to experimental data revealing unknown causes by known consequences that would be crucial for data calibration and validation. Data assimilation adds value in a ND evaluation process, adjusting nuclear data to particular application providing so-called optimized design-oriented library, calibrating nuclear data involving IEs since all theories and differential experiments provide the only relative values, and providing an evidence-based background for validation of Nuclear data libraries substantiating the UQ process. Similarly, it valorizes experimental data and the experiments, as such involving them in a scientific turnover extracting essential information inherently contained in legacy and newly set up experiments, and prioritizing dedicated basic experimental programs. Given that a number of popular algorithms, including deterministic like Generalized Linear Least Square methodology and stochastic ones like Backward and Hierarchic or Total Monte-Carlo, Hierarchic Monte-Carlo, etc., being different in terms of particular numerical formalism are, though, commonly grounded on the Bayesian theoretical basis. They demonstrated sufficient maturity, providing optimized design-oriented data libraries or evidence-based backgrounds for a science-driven validation of general-purpose libraries in a wide range of practical applications.
© E. Ivanov et al., Published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.