Nuclear Sciences & Technologies


EPJ D Highlight - Bending hot molecules

Japanese scientists have developed a method to study hot carbon dioxide molecules by controlling the likelihood that reactions occur between electrons and hot molecules. vector_master / Fotolia

New model for controlling hot molecules reactions, which are relevant to fusion, space exploration and planetary science

Hot molecules, which are found in extreme environments such as the edges of fusion reactors, are much more reactive than those used to understand reaction studies at ambient temperature. Detailed knowledge of their reactions is not only relevant to modelling nuclear fusion devices; it is also crucial in simulating the reaction that takes place on a spacecraft’s heat shield at the moment when it re-enters Earth’s atmosphere. Further, it can help us understand the physics and chemistry of planetary atmospheres. In a novel and comprehensive study just published in EPJ D, Masamitsu Hoshino from Sophia University, Tokyo, Japan, and colleagues reveal a method for controlling the likelihood that these reactions between electrons and hot molecules occur, by altering the degree of bending the linear molecules, modulated by reaching precisely defined temperatures.


EPJ Plus Highlight - You were right: rotational motion is relative, too, Mr Einstein!

Einstein's relativity theory also applies to rotational motion. © sakkmesterke / Fotolia

Extension of the relativity theory to rotational motion, one hundred years after Einstein first published the general theory of relativity

It has been one hundred years since the publication of Einstein’s general theory of relativity in May 1916. In a paper recently published in EPJ Plus, Norwegian physicist Øyvind Grøn from the Oslo and Akershus University College of Applied Sciences and his co-author Torkild Jemterud demonstrate that the rotational motion in the universe is also subject to the theory of relativity.


EPJ A Highlight - Nuclear physics’ interdisciplinary progress

Nuclear physics’ interpretations could benefit from approaches found in other fields of physics.
© Christoph Burgstedt / Fotolia

Theoretical nuclear physics could yield unique insights by extending methods and observations from other research fields

The theoretical view of the structure of the atom nucleus is not carved in stone. Particularly, nuclear physics research could benefit from approaches found in other fields of physics. Reflections on these aspects were just released in a new type of rapid publications in the new Letters section of EPJ A, which provides a forum for the concise expression of more personal opinions on important scientific matters in the field. In a Letter to the EPJ A Editor, Pier Francesco Bortignon and Ricardo A. Broglia from the University of Milan, Italy, use, among others, the example of superconductivity to explain how nuclear physics can extend physical concepts originally developed in solid state physics.


EPJ A Highlight - Analysing Coulomb-excitation experiments with exotic beams

Dedicated detection arrays for particle--ray coincidences are now routinely in use at radioactive-ion beam facilities around the world.

This paper presents a number of novel and alternative analysis techniques to extract transition strengths and quadrupole moments from Coulomb excitation data with Radioactive Ion Beams (RIBs) using the GOSIA code. It is anticipated that related approaches and techniques will gain an even greater importance as a wider range of post-accelerated RIBs becomes available at the next generation of ISOL facilities.


EPJ A Highlight - First measurement of 60Ge β-decay

A sample image recorded by the OTPC detector’s CCD camera showing the particle trajectories. The vertical track corresponds to the 60Ge ion entering the detector and the other track corresponds to the (β-delayed) proton.

60Ge, with its 28 neutrons and 32 protons, is an extremely exotic nucleus, discovered about 10 years ago when only three ions were produced. Its decay properties were measured for the first time in this work. In this experiment, performed at the National Superconducting Cyclotron Laboratory (MSU, USA), the

60Ge ions were produced in 78Kr beam fragmentation reactions and separated from the other reaction products in the A1900 separator. The ions were detected in the active volume of the gaseous time-projection chamber with optical readout (OTPC), where they later decayed. This detector allows exotic decay modes to be identified, even with very small statistics present. The decay of about 20

60Ge ions was observed by β-delayed proton emission yielding a branching ratio of ~100% and a half-life of 20+7-5 ms. This value agrees well with theoretical predictions.


EPJ E Highlight - Tumble-proof cargo transporter in biological cells

The average number density field of particles in the vicinity of the motor

New model shows how collective transport by synthetic nanomotors along biopolymer filaments can be effectively directed

Ever wondered how a molecular nanomotor works when repairing DNA or transporting material such as organelles in the cell? Typically, nanomotors move along biopolymer filaments to go about their duties in the cell. To do so, they use the energy of chemical reactions derived from their surroundings to propel themselves. In a new study published in EPJ E, Mu-Jie Huang and Raymond Kapral from the University of Toronto in Ontario, Canada show that small synthetic motors can attach to polymeric filaments and - unlike what previous studies showed - move along without changing either their shape or the direction in which they set out to move. This makes it possible to effectively deliver the substances they transport, such as anti-cancer drugs or anti-pollutants.


EPJ Plus Highlight - Back to basics with thermoelectric power

Determination of the Seebeck coefficient for a circuit composed of two dissimilar materials.

New study highlights the role of electron diffusivity when turning waste heat into electricity

Many phenomena in physics, though well-known, are not necessarily widely understood. That’s the case with thermoelectricity, which harnesses waste heat by coupling heat flux and electric current. However, understanding such phenomena is important in order to leave the door open for discovering novel manifestations of them. Thus, even today physicists working in the area of thermoelectricity continue to ask fundamental questions about the underlying physical process. For example, in a recent study, a team based in France questioned the nature of the force that puts electrons to work when a temperature difference is applied across a thermoelectric material. Now, Henni Ouerdane, affiliated to the Russian Quantum Center near Moscow, and colleagues have published in EPJ Plus a study showing that the force that puts electrons to work to harness the waste heat is linked to the ability of electrons to diffuse through the material. Potential applications in the field of electrical power production from waste heat include thermoelectric devices designed to boost power over a range spanning ten orders of magnitude: typically from microwatts to several kilowatts.


EPJ Quantum Technology Review - Macroscopic Quantum Resonators (MAQRO): 2015 update


Do the laws of quantum physics still hold for macroscopic objects - this is at the heart of Schrödinger’s cat paradox - or do gravitation or yet unknown effects set a limit for massive particles? What is the fundamental relation between quantum physics and gravity? Ground-based experiments addressing these questions may soon face limitations due to limited free-fall times and the quality of vacuum and microgravity. The proposed mission Macroscopic Quantum Resonators (MAQRO) may overcome these limitations and allow researchers to address such fundamental questions. MAQRO harnesses recent developments in quantum optomechanics, high-mass matter-wave interferometry as well as state-of-the-art space technology to push macroscopic quantum experiments towards their ultimate performance limits and to open new horizons for applying quantum technology in space. The main scientific goal is to probe the vastly unexplored ‘quantum-classical’ transition for increasingly massive objects, testing the predictions of quantum theory for objects in a size and mass regime unachievable in ground-based experiments. The hardware will largely be based on available space technology.

In this review article, the authors present the MAQRO proposal submitted in response to the ESA's 4th Cosmic Vision call for a medium-sized mission (M4) with a possible launch in 2025, and review the progress with respect to the original MAQRO proposal made in 2010. In particular, the updated proposal overcomes several critical issues of the original proposal by relying on established experimental techniques from high-mass matter-wave interferometry and by introducing novel ideas for particle loading and manipulation. Moreover, the mission design was improved to better fulfil the stringent environmental requirements for macroscopic quantum experiments.


EPJ E News: Pawel Pieranski honored with the Prix Félix Robin 2015

We congratulate Professor Pawel Pieranski of the Laboratoire de Physique des Solides, Université Paris-Sud, who has been awarded the Prix Félix Robin* 2015 by the French Physical Society.

Today, 24 April, Pieranski will receive the prize from the president of the French CNRS Alain Fuchs during the award ceremony that will take place at the Palais de la Découverte in Paris. During the event Pieranski will give a presentation entitled “La beauté universelle des cristaux liquides” that will bring into focus the peculiarities of liquid crystals and how these materials challenge our understanding of the states of matter.

Pieranski is a long standing contributor to EPJ, especially EPJ E. His EPJ papers can be found here.

*The Prix Félix Robin 2015 is one of the 6 grand awards of the Société Française de Physique and the one with the longest tradition - it was instituted in 1922.

EPJ B Highlight - Electronic counterpart to ecological models revealed

Two coupled logistic maps.

Peering into the future of populations with the help of complex networks of predictive maps

Predicting the future from the present - that’s what logistic maps can do. For example, they can be used to predict the evolution of a population in the near future based on its present situation. They are relevant when studing systems such as entire populations, where the behaviour of the separate units - which have the ability to self-organise - cannot explain the behaviour of the system as a whole. Alexandre L'Her from the University of the Republic, Montevideo, Uruguay, and colleagues have now developed an electronic version of a logistic map that is capable of interacting with many other maps, making the model scalable. As a benchmark to explain new emerging behaviours of entire complex systems, they have studied networks of logistic maps coupled together at various levels. Their findings were recently published in EPJ B and make it possible to more easily compare previous computer simulations with experimental results obtained using this state-of-the art electronic model.


G. Moutiers and A. Nicolas
ISSN: 2491-9292 (Electronic Edition)

© EDP Sciences

Conference announcements


Magnetic Island, Queensland, Australia, 22-24 July 2017