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Abstract. Crystallization, a prototypical self-organization process during which a disordered state spon-
taneously transforms into a crystal characterized by a regular arrangement of its building blocks, usually
proceeds by nucleation and growth. In the initial stages of the transformation, a localized nucleus of the
new phase forms in the old one due to a random fluctuation. Most of these nuclei disappear after a short
time, but rarely a crystalline embryo may reach a critical size after which further growth becomes ther-
modynamically favorable and the entire system is converted into the new phase. In this article, we will
discuss several theoretical concepts and computational methods to study crystallization. More specifically,
we will address the rare event problem arising in the simulation of nucleation processes and explain how
to calculate nucleation rates accurately. Particular attention is directed towards discussing statistical tools
to analyze crystallization trajectories and identify the transition mechanism.

1 Introduction

If liquid water is cooled below zero degrees Celsius at
atmospheric pressure, it suddenly changes into solid ice
with physical and chemical properties drastically differing
from those of the liquid. On a microscopic level, during
this freezing transition a fluid without long-range order
of its molecules turns into a solid, in which the molecules
are arranged on a regular lattice. Due to thermal motion,
the molecules fluctuate around their ideal lattice positions
even in the solid, but on the average their positions are
ordered over macroscopic distances. Similar freezing tran-
sitions are observed in all liquids (except helium) provided
they are subject to suitable cooling procedures that pre-
vent them from forming a glass, an amorphous solid sta-
bilized by arrested dynamics rather than thermodynam-
ics. Crystals can also form by deposition from the vapor
or by precipitation from a supersaturated solution (this is
how crystalline sea salt is produced by evaporation). While
crystallization was first discovered for atomic and molec-
ular liquids, much larger units such as proteins [1, 2], col-
loidal particles [3] or even dusty plasmas, charged “dust”
particles levitated in a plasma [4, 5], also form crystals
and many of these solidification events play an important
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role in a variety of natural and technological processes
ranging from the formation of ice crystals in stratospheric
clouds and bone mineralization to the phase decomposi-
tion of alloys and the manufacturing of pharmaceuticals.
Indeed, crystallization can be viewed as a prototypical self-
assembly process, during which building blocks of a few
species spontaneously arrange in ordered structures. In
this article, we will discuss the mechanism by which crys-
tals of various substances form. In doing so, we will pay
particular attention to the theoretical concepts of compu-
tational methods and statistical analysis techniques that
can be used to investigate and understand self-assembly
by crystallization.

While at temperatures below zero degrees Celsius
ice is the thermodynamically stable phase of water, it
has been known for centuries that one can cool water
down below the freezing point without the liquid actu-
ally freezing. (Such water is then said to be in a super-
cooled state.) In fact, in 1724 the German scientist Daniel
Gabriel Fahrenheit found that boiled water in sealed con-
tainers remained liquid even when put outside in winter
nights at temperatures as cold as −9 ◦C [6]. But, when
he then dropped small ice crystals into the water, the liq-
uid suddenly froze and a similarly rapid crystallization
occurred upon shaking. Subsequently, Fahrenheit’s exper-
iments were reproduced and improved by many other sci-
entists [7] and currently the world record for the supercool-
ing of water lies at −46 ◦C as determined by probing water
droplets cooled by evaporation with ultrafast x-rays [8].
Deep supercooling as well as the dramatic speedup of crys-
tallization by catalyzing particles was demonstrated for
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Fig. 1. Ice nucleus forming in supercooled liquid water (snap-
shot from a simulation). Molecules belonging to the liquid are
represented by the space-filling model. To highlight the regu-
lar structure of the nucleus, the crystalline part is depicted by
sticks forming a hexagonal pattern and corresponding to the re-
spective hydrogen bonds. (Picture courtesy of Philipp Geiger.)

many other substances and it is now clear that all liquids
can be supercooled regardless of the type of interaction
acting between their basic constituents.

The fact that liquid water and other fluids can be kept
almost indefinitely in a supercooled state indicates that
crystallization is opposed by a free energy barrier that is
large compared to typical thermal fluctuations. This bar-
rier prevents the system from rapidly transforming into
the thermodynamically stable state such that it can exist
in a metastable state for long times. The origin of this
barrier can be understood, at least qualitatively, in the
framework of classical nucleation theory (CNT), a theory
originally developed for droplet condensation from super-
saturated vapors by Volmer and Weber [9] and Becker and
Döring [10] and later generalized to the crystallization of
supercooled liquids by Turnbull [11]. Classical nucleation
theory, discussed in detail below, posits that the trans-
formation occurs via the formation of a small, localized
region of the new phase in the metastable old phase. An
example of such a nucleus is given in fig. 1 showing an ice
crystallite forming in supercooled water as observed in a
computer simulation based on the TIP4P/ice model [12].
The free energy of this nucleus has two main contributions:
a negative bulk term, which arises from the formation of
the stable phase and lowers the total free energy, and a
positive surface term occurring due to the free energetic
cost of creating an interface between the nucleus and the
metastable phase in which it forms. Since the first term
scales with the volume of the nucleus while the second
one scales with its surface area, the free energy increases
for small nucleus sizes, but for growing nuclei the volume
term eventually dominates leading to a decrease of the

free energy with nucleus size. The competition of these
two terms creates a free energy barrier that prevents the
supercooled liquid from immediate crystallization. Never-
theless, small regions of the stable phase randomly appear
in the metastable phase due to thermal fluctuations, but
usually disappear after a short time due to the increasing
free energy. The macroscopic phase transition only takes
place if, due to a rare random fluctuation, one of these
regions grows beyond the so-called critical size. Once that
happens, the crystallite has a strong tendency to grow fur-
ther driven by the free energy, which now decreases with
growing nucleus. This growth process then rapidly leads
to the crystallization of the entire system.

If a nucleation event takes place deep in the bulk of
the metastable phase away from surfaces or impurities,
one speaks of homogeneous nucleation. In contrast, dur-
ing heterogeneous nucleation the nucleus forms near for-
eign objects that reduce the free energetic cost of the inter-
face and, thus, reduce the height of the nucleation barrier,
thereby facilitating the phase transition. Most nucleation
processes occurring in technology and nature are hetero-
geneous, for instance, the condensation of water droplets
in the atmosphere is catalyzed by nanoparticles. Similarly,
crystallization usually starts near surfaces or impurities.

The scenario of (homogeneous or heterogeneous) nu-
cleation followed by growth envisioned by CNT captures
the essential mechanism of most first-order phase transi-
tions. (An exception is the spinodal decomposition [13,14],
in which the old phase is unstable against small fluc-
tuations, which are exponentially amplified and lead to
a rapid evolution towards the thermodynamically stable
phase simultaneously over the entire sample volume.) On
a more quantitative level, however, nucleation theory often
yields nucleation rates (number of nucleation events per
unit time and unit volume) that deviate from experimen-
tally measured nucleation rates by orders of magnitude.
The exact reason for such discrepancies may lie in the ap-
plication of macroscopic concepts such as a well-defined
surface and its excess free energy to a microscopic situa-
tion, but also in the neglect of certain degrees of freedom
which may importantly influence the nucleation mecha-
nism and its dynamics. For instance, the size of the nucleus
of the new phase forming in the old one may not be the
only relevant variable and also its shape and structure may
matter. Due to the limited temporal and spatial resolution
of experimental probes, it is usually difficult to infer de-
tailed information about the nucleation mechanism from
experiments, which usually detect only the macroscopic
consequence of nucleation long after the occurrence of the
crucial barrier crossing event. Hence, such experiments
can only determine nucleation rates and their dependence
on external conditions, but lack the time and space res-
olution to provide specific information on the nucleation
mechanism. However, in the last decades, computer simu-
lations [15,16] have played an increasingly important role
in the study of nucleation processes, providing a powerful
way to obtain microscopic details of the formation of the
new phase and to test models that go beyond the simpli-
fied assumptions of CNT. In fact, most of what we know
today about the microscopic mechanism of nucleation has
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been learned from computer simulations. (It is also true
that simulation studies of nucleation are usually done for
systems that are much simpler than those studied in lab-
oratory experiments.)

Due to the free energy barrier opposing a rapid phase
transition, nucleation processes are characterized by rare
barrier crossing events. The resulting separation between
the basic time scales of atomic motion and the long time
scales of nucleation makes straightforward computer sim-
ulation methods such as molecular dynamics (MD) and
Monte Carlo (MC) simulations impractical and more so-
phisticated approaches are required for studying phase
transformations numerically. In this review article, we will
discuss several computational methods that can be used to
overcome the rare event problem of nucleation. These ap-
proaches include methods for the calculation of free ener-
gies and rate constants that require a priori knowledge of
the reaction coordinate, but also more advanced path sam-
pling procedures and statistical analysis tools, where such
information is not needed in advance. Rather, these meth-
ods are designed to find reaction coordinates and identify
the important degrees of freedom that characterize the
crystallization mechanism. We will illustrate these com-
putational methods with several examples taken from the
recent literature. In doing so, we will focus on homoge-
neous nucleation processes and will not say much about
heterogeneous nucleation occurring close to impurities or
surfaces. Such nucleation sites can not only speed up the
nucleation dramatically by lowering the free energy barrier
but also lead to the formation of different crystalline struc-
tures that would not form during homogeneous nucleation.
We would like to stress, however, that the computational
methods considered here can be applied to a variety of
processes dominated by events that occur rarely, but pro-
ceed rapidly when initiated. In particular, these methods
can be applied to study both homogeneous and heteroge-
neous crystallization, but also other nucleation processes
such as melting, condensation, cavitation, phase separa-
tion and structural phase transitions.

While the rate determining step for crystallization is
usually the nucleation of a supercritical crystallite, the
growth following the nucleation event is equally impor-
tant in determining the morphology of the resulting crys-
talline material. For instance, urea crystals of many shapes
ranging from needles to regular tetrahedra can be grown
from solutions by tuning the relative growth rates of dif-
ferent facets through variation of additive concentrations
and supersaturation [17,18]. Although such surface growth
processes may also be dominated by activated events, we
will not discuss them in this article but only point out
that they can also be studied with the computer sim-
ulation methods presented here. Furthermore, we would
like to mention that simple nucleation and growth is not
the only mechanism for spontaneous self-assembly and a
variety of other dynamical pathways to self-assembly ex-
ist. These range from non-classical nucleation, in which
one or more crystalline or amorphous metastable inter-
mediates form on the way to the final thermodynamically
stable state [19–21], to far-from-equilibrium processes, in
which kinetic traps or the active motion of the building

blocks determine the shape and structure of the assem-
blies emerging at the end of the process [22]. Here, we
do not consider such processes, but limit ourselves to the
discussion of near-equilibrium self-assembly through crys-
tallization over a single barrier.

2 Classical nucleation theory

2.1 General picture

Classical nucleation theory [23, 24], based on the Gibbs
approach [25, 26] (formulated in the 19th century), is a
combination a series of works by Volmer and Weber [9],
Farkas [27], Kaischew and Stranski [28–30], Becker and
Döring [10], Frenkel [31,32], and Zeldovich [33], which ap-
peared in the first half of the last century. The central
ideas of CNT and its application to various first-order
phase transitions ranging from condensation and cavita-
tion to phase decomposition and crystallization had been
described in detail in several review articles [14,34–36] and
books [23,24,37].

As mentioned above, CNT views the nucleation pro-
cess as resulting from an interplay between two terms in
the free energy:

ΔF = ΔFV + ΔFI , (1)

where ΔF is the total free energy change associated with
the creation of the nucleus of the new phase. ΔFV is the
volume-related gain in the free energy due to the differ-
ence in the chemical potentials of the liquid and the crys-
tal and ΔFI is the cost of the interface created between
them. (Here, we refer to the thermodynamic free energy F ,
which, depending on the considered ensemble, stands for
the Gibbs free energy, Helmholtz free energy, or the grand
potential.) CNT attributes the presence of the free energy
barrier stabilizing the metastable state to the competition
between the two terms appearing in eq. (1), the first of
which drives the system towards the thermodynamically
stable state, while the second opposes the formation of the
new phase. The interplay of the free energy contributions
allows to illustrate the concept of the critical clusters and
to connect the reaction rate to the height of the free energy
barrier. For nuclei smaller than a certain size, the cost for
the interface creation outweighs the free energy gain due to
the formation of the new phase and the system is thermo-
dynamically driven back to the initial metastable state.
When, however, thermal fluctuations manage to form a
nucleus of a size larger than critical, the thermodynamic
force acts in the opposite direction and the new phase
spontaneously grows to macroscopic dimensions.

Standard CNT postulates that the transition proceeds
through the formation of a spherical nucleus of the new
phase. If the pressure is kept constant, eq. (1) can be writ-
ten as a function of only one variable, R, which is the
radius of the nucleus (see also the sketch in fig. 2):

ΔF (R) = −4πR3

3
ρ|Δμ| + 4πR2γ. (2)
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Fig. 2. Sketch of the nucleation free energy ΔF as a function
of the nucleus radius R as envisaged in CNT (cf. eq. (2)). The
total free energy (solid) line is the sum of two separate terms of
opposite sign (dashed and dot-dashed lines). The positive term
is the cost of forming the interface between the two phases
and is proportional to the surface area of this interface. For
a spherical nucleus the surface area is simply given by 4πR2.
Multiplication with the surface tension γ then yields the free
energy of the interface. The negative term, on the other hand,
is associated with the lower free energy of the stable phase
with respect to the metastable phase. This term is negative
and is obtained by multiplying the number of particles in the
nucleus, (4π/3)R3ρ, (remember that ρ is the number density
of the stable phase) with the difference in chemical potential
Δμ between the two phases. (To make clear that this volume
term is negative we have written it as −(4π/3)R3ρ|Δμ|, where
|Δμ| is the absolute value of the difference in chemical poten-
tial.) Due to the different scaling of the two terms with R, the
total free energy is dominated by the surface term for small
values of R, leading to a free energy that is initially uphill. For
growing R, however, the negative volume term gains impor-
tance relative to the surface term and eventually outweighs it,
leading to a free energy decreasing with size. In between, the
free energy reaches a maximum at the so-called critical radius
R∗ producing a barrier of height ΔF (R∗).

The difference in the chemical potential between the bulk
phases, Δμ, the number density of the nucleating phase,
ρ, and the surface free energy density, γ, are assumed to
be constant. The first term on the right hand side of the
above equation is thus nothing else than the number of
particles in the nucleus, given as product of volume and
density, times the difference in chemical potential (remem-
ber that for a one component system the chemical poten-
tial is also the free energy per particle). The second term
is the surface area of the nucleus, which is assumed to
be spherical, times the surface tension γ. By taking the
derivative of ΔF (R) with respect to the radius R and set-
ting the derivative to zero in order to find the free energy

Fig. 3. The Kramers problem: Escape of a Brownian parti-
cle from a deep potential energy well [38–40]. The solid line
denotes the potential energy landscape U(q) on which the par-
ticle, shown by a sphere, evolves diffusively with a diffusion
coefficient D(q) along the coordinate q. To compute the es-
cape rate from the well a reflective boundary is placed at a
and an absorbing boundary at b. The horizontal bars on the
q-axis indicate the regions over which the integrals appearing
in the expression for the mean first-passage time are carried
out. The barrier height, ΔU = U(q∗) − U(q0), is supposed to
be much larger than the thermal energy kBT .

maximum one finds the critical radius of the nucleus,

R∗ =
2γ

ρ|Δμ| . (3)

Classical nucleation theory also yields the nucleation rate
J (i.e., the average number of nucleation events per unit
time and unit volume),

J = K exp [−βΔF (R∗)] , (4)

which depends exponentially on the barrier heightΔF (R∗).
Here, β = 1/kBT , kB is the Boltzmann constant, T is
the temperature, and K is the so-called kinetic prefactor.
In the following, we will derive this formula for the
nucleation rate and provide an explicit expression for the
kinetic prefactor in the framework of classical nucleation
theory.

2.2 Kramers problem and mean first-passage times

Our starting point is the so-called Kramers problem [38],
in which one considers the escape of a one-dimensional
particle from a deep potential energy well, as depicted
schematically in fig. 3. The particle, whose position is spec-
ified by the variable q, is supposed to move diffusively on
the potential energy surface U(q) under the influence of
the force −∂U/∂q with a position-dependent diffusion co-
efficient D(q). Accordingly, the motion of the particle is
described by the overdamped Langevin equation [40],

q̇ = −D(q)
∂βU(q)

∂q
+

√
2D(q)ξ(t), (5)

where ξ(t) is Gaussian white noise mimicking the stochas-
tic effect of a solvent that is thought to surround the par-
ticle, but is not represented explicitly. The overdamped
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Langevin equation is obtained from the full Langevin
equation in the limit of large friction. The Kramers prob-
lem now consists in calculating the rate at which a particle
initially located in the well escapes over the barrier. If the
barrier is high compared to the thermal energy kBT , the
particle will typically fluctuate in the well for a long time
before a rare fluctuation drives it over the barrier, leading
to a small escape rate.

Progress can be made by considering the probabil-
ity density P (q, t) which describes the probability to find
the particle at position q at time t. It can be shown [40]
that, if the particle position evolves according to the above
Langevin equation, the time evolution of the probability
density obeys the Smoluchowski equation, a special case
of the Fokker-Planck equation valid in the overdamped
regime,

∂P (q, t)
∂t

=
∂

∂q

[
D(q)

∂βU(q)
∂q

P (q, t) + D(q)
∂P (q, t)

∂q

]
.

(6)
Based on this equation, one can then obtain an expression
for the mean first-passage time (MFPT), which is defined
as follows. Imagine that the particle is initially placed at a
certain position q0 and that there is a reflective boundary
located at the position a as well as an absorbing boundary
located at b. The positions of these boundaries are selected
such that a is left of the potential energy well and b is on
the other side of the well, beyond the free energy barrier.
The initial position q0 is somewhere between a and b, not
necessarily at the bottom of the well but also not very close
to the top of the barrier. The particle let loose at q0 will
move under the influence of the random forces ξ(t) and
when it happens to hit the wall at a it is simply reflected.
When it eventually reaches the wall located at b, however,
it is absorbed. The time between the start of the particle
at q0 and its absorption is called the first-passage time,
because it is the time when the particle first reaches b
(since we imagine that the particle is absorbed, there are
no further passages at b). If we now imagine that we repeat
this experiment many times, due to the noise the first-
passage time will be different even if the particle starts
at the same position q0 each time. Therefore, it makes
sense to consider a distribution of first-passage times, the
average of which is the mean first-passage time, τ(q0).
Using the Smoluchowski equation (6), one can show that
τ for our particle is given by [40]

τ(q0) =
∫ b

q0

dy
eβU(y)

D(y)

∫ y

a

dz e−βU(z), (7)

which in general depends on q0. For a detailed deriva-
tion of this equation we refer to the article by Pontryagin,
Andronov and Vitt [41], which translation is reproduced in
the book of Zwanzig [40]. Note that the above expression
for the MFPT is valid for any potential energy surface
U(q) and any placement of the reflecting and absorbing
barriers and is not restricted to the well escape problem
considered here.

For the Kramers problem the expression for the mean
first-passage time of eq. (7) can be simplified significantly.

Let us ask ourselves for which values of y the integrand of
the outer integral on the right hand side of eq. (7) has the
largest contribution. To answer this question, first assume
that the diffusion coefficient D(q) does not vary strongly
between a and b, thus, the change in exp[βU(y)]/D(y)
is mainly determined by the variation of the exponential
part, which is largest in the region where the potential en-
ergy U(y) is large, i.e., left and right of the well. For values
of y far on the left side of the well, however, the inner inte-
gral

∫ y

a
dz exp[−βU(z)] has not picked up any significant

contributions yet, because exp[−βU(z)] has large values
only near the bottom of the well. So the only region where
the integrand of the outer integral has significant values
is near the top of the barrier. Hence, for values of q0 in
the potential energy well, the integration from q0 to b can
be replaced by an integration over the barrier region, de-
noted by the symbol ∩ in fig. 3. Also the integration range
for the second integral can be simplified similarly. For val-
ues of the upper integral limit in the barrier region (these
are the only y-values we need to consider), the integral
over z already encompasses all significant contributions of
the integral that come only from the well region, where
exp[−βU(z)] has the largest values. Hence, it is sufficient
to carry out the integration over z in the well region only,
as indicated by the symbol ∪ in fig. 3. As a result, we can
write the MFPT as a product of two independent inte-
grals, one over the barrier region and one over the well
region,

τ =
∫
∩

dy
eβU(y)

D(y)

∫
∪

dz e−βU(z). (8)

Note that the integration range of the second integral does
not depend on y any more. Interestingly, the mean first-
passage time obtained here does not depend on the initial
point q0, implying that all the points in the well have
on average an identical escape time. This is indeed to be
expected if equilibration within the well occurs on time
scales that are much shorter than the time in which a
particle remains trapped by the well. This is the case if
the barrier is sufficiently high compared to kBT and the
diffusion coefficient D(q) in the well is not significantly
lower than near the barrier top. If this second condition is
not met, i.e., if the diffusion coefficient in the well is very
small, the argument used above to justify the separation
of the two integrals breaks down and the MFPT cannot
be written in the simple form of eq. (8).

Under certain assumptions, eq. (8) can be simplified
even further. Namely, if the shape of the barrier is close to
parabolic near its top (i.e., in the region within a few kBT
from the top), the potential energy U(q) can be expanded
around q∗ and truncated after the quadratic term,

U(q) ≈ U(q∗) − 1
2
ω2(q − q∗)2, (9)

where the linear term vanishes because the derivative of
U(q) with respect to q is zero at q∗. The constant ω2 is
the absolute value of the curvature of U(q) at the barrier
top, ω2 = |U ′′(q∗)|. Further assuming that the diffusion
coefficient in the barrier region is essentially constant, the
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Fig. 4. Left: Free energy of a supercooled Lennard-Jones fluid as a function of the size of the largest crystalline cluster [42].
The solid line represents the functional form predicted by CNT (eq. (16)) fitted to the simulation data (crosses) with variational
parameters a and b. The inset depicts a configuration with a critical cluster consisting of large opaque spheres; small transparent
spheres indicate positions of other particles in the box. Right: A crystallite (dark grey spheres) in the supercooled liquid (white
and light grey spheres) grows or shrinks by the attachment or detachment of particles, respectively, as indicated by the arrows.
When one of the liquid particles near the crystallite (light grey spheres) attaches to the cluster, it needs to move by a distance
λ of molecular dimensions.

first integral in eq. (8) turns into a Gaussian integral that
can be solved analytically,∫

∩
dy

eβU(y)

D(y)
=

eβU(q∗)

D(q∗)

∫ ∞

−∞
dy e−βω2(y−q∗)2/2

=
√

2πkBT

ω

eβU(q∗)

D(q∗)
, (10)

where we have extended the integration from −∞ and
∞, because the Gaussian function yields significant values
only near q∗. Since the escape rate k (number of escapes
per unit time) is just the inverse of the mean first-passage
time, k = 1/τ , we can finally write the escape rate as

k =
ωD(q∗)√
2πkBT

e−βU(q∗)∫
∪ dq e−βU(q)

. (11)

Here, the first fraction on the right hand side is the kinetic
prefactor K,

K =
ωD(q∗)√
2πkBT

, (12)

which depends on the curvature of the barrier, the diffu-
sion coefficient on the barrier as well as on the tempera-
ture. The second fraction in eq. (11), on the other hand,
is nothing else than the equilibrium probability density
P (q∗) to find the particle at q∗, properly normalized by
the integral

P (q∗) =
e−βU(q∗)∫

∪ dq e−βU(q)
. (13)

In the following, we will use this result to derive the nu-
cleation rate J within classical nucleation theory.

2.3 Nucleation rate of CNT

To apply Kramers theory to the crystallization problem we
need to introduce a reaction coordinate, a variable that

describes the progress of the crystallization process and
plays the role of the coordinate q in the derivation laid out
above. For this purpose, we consider a certain volume V of
the supercooled liquid and imagine that we can identify all
little crystallites present in this volume. At any given time
there might be several crystallites in the system and, in
general, they will have different sizes. Let us now define n
as the size of the largest crystallite found in the given vol-
ume. In this way we can assign a well-defined and unique
number to any given configuration of the system and in
the following we will use n as our reaction coordinate. To
establish a connection to the Kramers problem, we view
the time evolution n(t) of the size of the largest cluster
as a diffusion process with a diffusion coefficient D(n).
The diffusive nature of the dynamics of n arises from the
stochastic growth and decay of a small crystallite in the
liquid occurring through the random attachment and de-
tachment of particles to and from the crystallite. The dif-
fusion process is driven by a thermodynamic force given
by the free energy F (n) = −kBT ln P (n), where P (n) is
the probability that the largest crystalline cluster in the
system has the size n. Since, as discussed earlier, the for-
mation of supercritical crystals is rare, the free energy
F (n) typically has a well at small sizes separated by a
high barrier from the completely crystalline system. A
typical nucleation free energy landscape F (n) is shown
in fig. 4.

Having defined the quantities n, D(n), and P (n), we
can now establish the mapping to the Kramers problem.
Accordingly, the nucleation rate J , i.e., the number of nu-
cleation events per unit time and unit volume, is obtained
by dividing the Kramers rate constant k through the sam-
ple volume V ,

J =
k

V
= Ze

D(n∗)
V

P (n∗), (14)
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where we introduced the commonly used Zeldovich fac-
tor [37,43],

Ze =

√
|ΔF ′′(n∗)|

2πkBT
, (15)

which is inversely proportional to the width of the free
energy barrier (the Zeldovich factor is given by Ze =
1/
√

πΔn, where Δn is the width of the free energy barrier
1 kBT below the top). Here, n∗ is the size of the largest
crystalline cluster at the top of the free energy barrier, and
P (n∗) is the probability that the largest crystalline cluster
has this size. ΔF ′′(n∗) and D(n∗) are the corresponding
free energy curvature and the diffusion coefficient, respec-
tively.

In order to compute the nucleation rate J , we have to
determine the quantities appearing in eq. (14) and in the
following we will do that in the framework of CNT. (In
later sections we will discuss how to compute F (n) and
D(n) with the help of computer simulations without re-
curring to the assumptions of classical nucleation theory.)
Since we monitor the nucleation process using the size n
of the crystallite, we write the nucleation free energy as a
function of n,

ΔF (n) = −n|Δμ| + (36π)1/3(nv)2/3γ, (16)

where v = 1/ρ is the volume per particle in the solid and
ρ is the corresponding number density. From this free en-
ergy, the size n∗ of the critical crystallite is easily obtained
by taking the derivative of ΔF (n) with respect to n and
setting it to zero. Solving the resulting equation for n∗

then yields

n∗ =
32πv2γ3

3|Δμ|3 . (17)

Inserting this critical size into the nucleation free energy
yields a barrier height of

ΔF (n∗) =
16πv2γ3

3|Δμ|2 =
1
2
|Δμ|n∗. (18)

As one can deduce from this equation, the size of the crit-
ical nucleus grows with decreasing difference in chemical
potential. As one approaches coexistence, where the differ-
ence in chemical potential vanishes, the size of the critical
nucleus diverges.

If the nucleation barrier is high, the probability that
the largest cluster in the system has size n∗ is equal to
the probability to find a cluster of size n∗. (As clusters
of size n∗ are very rare, the probability that there is an
even larger cluster in the system is negligible.) As a con-
sequence, the probability P (n∗) that the largest cluster in
the system has critical size can be written as

P (n∗) = N exp[−βΔF (n∗)]. (19)

This probability is the product of the number N of par-
ticles in the system, i.e., the number of sites where nu-
cleation can start, times the probability exp[−βΔF (n∗)]

that a crystal of size n∗ forms at that site. Using the nu-
cleation free energy from eq. (16), we can also determine
the curvature of the free energy at the barrier top,

|ΔF ′′(n∗)| =
|Δμ|4

32πγ3v2
=

|Δμ|
3n∗ . (20)

Putting the results we have obtained so far together, the
nucleation rate can be written as

J =

√
β|Δμ|
6πn∗

D(n∗)N
V

exp
(
−β|Δμ|n∗

2

)
. (21)

All quantities appearing in this expression, except the dif-
fusion coefficient D(n∗), can be determined from γ, Δμ,
and β. (Note that at the beginning of this derivation we
explicitly assumed to know the volume V of the super-
cooled sample, otherwise one computes the Kramers rate
constant k = JV , which provides the number of nucle-
ation events per unit time in a given volume.) So the only
thing left to do for a complete theory of the nucleation rate
(constant) is to estimate the diffusion coefficient D(n). We
will do that in the following.

First we note that in order to compute the nucleation
rate we need to know the diffusion coefficient D(n) only
for values of n in the barrier region. Due to the rarity of
the nucleation events, only one cluster in this size range is
present in the system at any given time (two or more clus-
ter would be extremely unlikely). Therefore, the change
in n, the size of the largest cluster, happens only through
growth or shrinkage of this single large cluster. At smaller
cluster sizes, on the other hand, it is possible that the role
of being the largest cluster switches from one cluster to
another such that it is not sufficient to consider a single
cluster in this size regime. In order to determine the diffu-
sion coefficient D(n) near the barrier top we now imagine
that the crystalline cluster grows by the attachment of sin-
gle particles from the liquid. The attachment occurs with
an attachment rate f+(n), which, in general, is a func-
tion of the size of the crystallite. Similarly, the crystallite
shrinks when particles detach from it and become liquid
particles. We imagine that this detachment process also
proceeds particle by particle with a detachment rate of
f−(n). We now express the diffusion coefficient D(n) in
terms of the attachment and detachment rates. For short
times t, the mean square displacement of the cluster size
n(t) from the cluster size n(0) at time t earlier grows lin-
early in time, thus defining the diffusion coefficient D(n),

〈[n(t) − n(0)]2〉 = 2D(n)t. (22)

Now, imagine that at time 0 the cluster has size n. Then,
the probability that a short time t later the cluster has
grown from n to n + 1 particles is f+t and the proba-
bility that it has lost a particle going from n to n − 1 is
f−t. In both cases the cluster size has changed exactly by
one unit. The probability that the cluster size remains the
same is 1 − f+t − f−t. Since we assume that the time t
is so short that f+t 	 1 and f−t 	 1, we do not need
to consider the cases where the particle number changes
by more than one unit because such events would have
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the probabilities of (f±t)2, which can be neglected. Ac-
cordingly, for short times, the mean square displacement
of the particle number is

〈[n(t) − n(0)]2〉 = f+t + f−t =
[
f+(n) + f−(n)

]
t. (23)

Comparison with eq. (22) then implies

D(n) =
f+(n) + f−(n)

2
. (24)

Thus, knowing the attachment and detachment rates we
know also the diffusion coefficient.

We can further simplify the expression for the diffusion
coefficient by noting that in equilibrium the attachment
and detachment rates are related by detailed balance,

f+(n)e−βΔF (n) = f−(n + 1)e−βΔF (n+1). (25)

Since we are interested in the values of the diffusion co-
efficient only at the barrier top, we can exploit the fact
that the free energy in this region is flat, i.e., ΔF (n) ≈
ΔF (n + 1). Therefore, at the critical sizes n∗ the attach-
ment and detachment rates are equal,

f+(n∗) = f−(n∗). (26)

As a consequence, the diffusion coefficient at the critical
sizes is simply equal to the attachment rate,

D(n∗) = f+(n∗). (27)

The attachment rate is not something we can determine
from the quantities we have considered so far such as the
surface tension γ or the difference in chemical potential
Δμ. In the following, we will derive an approximation of
the attachment rate based on some simple physical con-
siderations.

To determine the attachment rate f+(n) of particles
to a crystallite of size n we imagine that particles that al-
ready are near the crystal need to move by a certain small
distance λ in order to lock into the right position and be-
come crystalline. These liquid particles that can become
crystalline and attach to the crystalline cluster are shown
in light grey in the right panel of fig. 4. In this figure, the
dark gray particles form the crystalline cluster. The white
particles belong to the supercooled liquid just as the light
grey particles, but they are too far away from the crys-
tal to attach to it in a short time. How many liquid light
grey particles are there now next to the crystal? Assum-
ing that the crystal is spherical with a radius R, these
liquid particles occupy a layer of thickness l around the
crystal with surface area 4πR2. Thus, the total volume
occupied by these particles is 4πR2l and their number is
nl = 4πR2l/v, where v is the volume per particle. Identify-
ing the thickness l of the layer with the particle diameter,
l is related to the volume per particle by l = (6v/π)1/3.
Inserting this relation into the expression for nl we obtain

nl = 4R2(6π2)1/3v−2/3. (28)

Using R = (3nv/4π)1/3, the number nl of liquid particles
in the first layer around the crystalline cluster is finally
estimated as

nl = 6n∗2/3, (29)

where we have replaced n by the number n∗ of particles
in the crystal of critical size, because that is the size for
which we want to know the attachment rate f+.

We now assume that particles in the layer around the
crystal move into their attaching position diffusively with
a self-diffusion constant DS . Hence, the time τ needed on
the average for a particle to move by a distance λ (remem-
ber that λ is the distance a particle has to travel in order
to become part of the crystal) is given by

τ =
λ2

4DS
. (30)

Here, the factor of 4 appears because the diffusion occurs
on the two-dimensional surface of the crystal. Also note
that by writing this expression we have assumed that a
particle on the surface of the crystal diffuses with the same
diffusion constant as in the bulk liquid. Since we have a
total of nl particles around the crystal and each of them
attaches at a rate of 1/τ = 4DS/λ2, the total attachment
rate f+(n∗) is given by

f+(n∗) =
nl

τ
=

24DS

λ2
n∗2/3. (31)

Putting everything together, we finally find the following
expression for the nucleation rate

J =

√
β|Δμ|
6πn∗

24DSN

λ2V
n∗2/3 exp

(
−β|Δμ|n∗

2

)
, (32)

where, as noted before, the critical nucleus size is given
by n∗ = 32πv2γ3/(3|Δμ|3). This equation is the central
result of CNT for the freezing transition. Thus, within
the framework of CNT, one can estimate the nucleation
rate and critical cluster size on the basis of the proper-
ties of the reacting bulk phases alone. The expression for
the nucleation rate is often used to analyze experimental
results. Also, the predictions of CNT can be used to ex-
tract quantities from computer simulations that are not
so easily calculated directly. For instance, recently criti-
cal cluster sizes obtained in simulations using the seed-
ing technique together with chemical potential differences
calculated in separate simulations were used to deter-
mine the surface tension between liquid water and ice
crystals, which was subsequently used to estimate nucle-
ation barriers and rates for the freezing of supercooled
water [44]. (These simulations are discussed in greater de-
tail in sect. 6.2.) Special computer simulation methods
are also available for the calculation of the kinetic prefac-
tor [45–49]. These methods are based on the concepts of
transition state theory and will be discussed in sect. 4.

CNT is based on a purely phenomenological approach
and gives a very suggestive qualitative picture of the nucle-
ation mechanism. Unfortunately, it usually fails to provide
a quantitatively accurate description of crystallization in
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real systems, even for rather simple examples like crystal-
lization of hard [50] or Lennard-Jones (LJ) [47] spheres.
To illustrate this point, we have plotted in the left panel
of fig. 4 the results of computer simulations for the free
energy landscape of crystal nucleation in a supercooled
monodisperse LJ fluid. A fit to the functional form of
CNT (eq. (16)) with |Δμ| and γ as variational parameters
lies close to the simulation results but does not reproduce
them exactly, indicating to the presence of some factors
not accounted for by CNT. Similarly, for the case where
the chemical potential difference and the interfacial free
energy are derived from other sources, the difference be-
tween CNT prediction and simulation amounts to about
20% in the height of the barrier and the critical cluster size
is much smaller than the one found in simulations [47].

2.4 When does CNT fail?

Classical nucleation theory relies on several simplifying
assumptions, all of which may be violated under certain
circumstances [36].

One central assumption is that nucleation is a one-step
process in which only one free energy barrier is relevant
and the nucleus forming in the metastable phase consists
of a small piece of the thermodynamically stable phase. It
has been known for a long time that many systems fail to
comply with these conditions and usually the transition
does not occur immediately into the most stable phase.
For LJ freezing, which we will use here as a routine exam-
ple, it has been shown [47, 51–56] that the crystallization
process follows the Ostwald’s step rule [57, 58]. This em-
pirical rule says that a metastable system may transform
into its final state through formation of an intermediate
phase if the free energy barrier between the initial and the
intermediate phases is lower than the one between the ini-
tial and the thermodynamically most stable states. In the
particular case of the LJ crystallization, the intermediate
phase is a body-centered cubic (bcc) crystal, which forms
more easily from a supercooled liquid than the thermo-
dynamically more stable face-centered cubic (fcc) struc-
ture. During the crystallization, the structural composi-
tion of crystalline clusters changes as they become larger.
Thus, the chemical potential difference, assumed constant
in CNT, is a function of the crystal size (the exact form of
this dependence is, however, unknown). The formation of
intermediate (in part liquid) phases during crystallization
has been observed also for many other systems including
small molecules, proteins and ice [36]. However, even for
the simplest gas-liquid transition, which does not involve
structural rearrangements, the density in the center of the
critical droplet is distinctly below the bulk liquid den-
sity [59]. Furthermore, the distribution of particles inside
a droplet is also not homogeneous but decays smoothly
from the center outwards into the gas phase. Thus, the
concept of a perfect piece of the stable crystalline struc-
ture sharply separated from the surrounding liquid is only
a rough approximation that fails in the initial stages of the
crystallization.

Another important assumption of classical nucleation
theory is the capillary approximation, which states that

the surface free energy associated with the interface be-
tween the crystallite and the liquid is constant and does
not depend on the curvature of the interface between two
phases. This approximation also breaks down on the mi-
croscopic level of small droplets. It is possible to introduce
a curvature dependent correcture to the expression for the
free energy in terms of a constant Tolman length [60], but,
as has been shown recently for liquids, this length might
also be a function of the droplet size [61–66].

For small crystallites, one also has to keep in mind
that the interfacial free energy of a crystal (which is quite
small for all faces of an fcc structure [67–69] and even
lower for the bcc phase [70]) depends on which crystal
face is in contact with the fluid. For comparison of the
simulation results on the LJ crystallization with theoreti-
cal predictions [47], the differences were assumed marginal
and an average over three different (fcc) values [68] was
used. In the most cases, however, the determination of the
surface free energy density is not straightforward, and it
is desirable to estimate its value from comparison of the
shapes of the free energy barriers computed in simulations
and predicted by CNT. In doing so, the standard CNT
is extended to include a correction assuming a constant
Tolman length [60] and the simulation results are fitted to
the new functional form [42,71], yielding a slightly better
agreement between CNT and simulations.

Further investigations of LJ crystallization in simula-
tions [72] revealed that the shape of the crystallites formed
in the course of transition is ellipsoidal rather than spher-
ical as assumed by CNT, which might be connected to
the different values of the interfacial free energies of crys-
tal faces. The correction of CNT in this respect does not
change the functional form of the free energy barrier pro-
jected on the number of particles in the largest cluster, but
shifts the analytic values of the size of the critical cluster
and the height of the barrier closer to those obtained in
simulations.

In order to address all these issues, CNT has recently
been modified to account for the non-spherical crystalline
droplets, the fuzziness of the liquid-solid interface and its
thermal fluctuations connected to the change of the inter-
face area [73–75]. We would also like to note that recently
non-classical nucleation pathways, in which nucleation oc-
curs through the aggregation of so-called pre-nucleation
clusters rather than monomer by monomer, have received
a lot of attention [19,20]. While it is clear that CNT does
not apply in this case, the ideas and concepts underly-
ing CNT remain useful as they can help to understand
the intermediate steps of more complex processes. Accord-
ingly, CNT should not by viewed as quantitative theory for
the prediction of nucleation rates, but rather as a helpful
framework to think about nucleation, and, in particular,
crystallization processes.

3 Setting the stage

3.1 Phase diagrams and free energy calculations

A study of a particular transition starts with the identifi-
cation of its initial and final states. Better yet is to place
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the process in the frame of a phase diagram, which spec-
ifies the equilibrium phase as a function of the external
conditions such as temperature and pressure. There are
many computer simulation methods for the calculation of
phase diagrams and in this section we will discuss a few
of them.

The most straightforward way to determine a phase di-
agram is just to prepare a system under given conditions,
let it evolve towards equilibrium and repeat for all con-
ditions of interest. Some studies, particularly of complex
systems, still use this approach despite its inaccuracy in
the identification of truly equilibrium states. For example,
if the relaxation towards the equilibrium state is very slow,
like in a glass, the stable state might not be reached on a
realistic time scale. Some illustrative examples of delayed
appearances of new phases can be found in the review by
Sear [36]. In some cases, specific Monte Carlo simulation
schemes can be constructed that incorporate nonphysical
moves designed to accelerate the equilibration. The exact
location of the boundary lines between different phases
is, however, only possible with more sophisticated tech-
niques. A thorough account of them is presented in many
books on methods of computer simulations [15,16,76], and
numerous reviews [77–81] assess their applicability in par-
ticular cases. Here, we briefly survey only a few techniques
particularly suited to the studies of crystallization and
omit those which applicability is restricted to less dense
systems, such as the Gibbs ensemble method [82,83].

Among the schemes that are employed for the deter-
mination of phase diagrams involving crystalline phases,
one can differentiate between techniques that rely on the
computation of the free energies and those which do not.
In the latter [84,85], two phases are simulated simultane-
ously, adjusting the conditions in a way to bring them in
equilibrium. The analysis then has to include the consid-
eration of an interface in between and its effects on the
phases in contact. A possible drawback of this approach
consists in the finite width of the interface, which may be
large enough to influence the apparently bulk phases, lead-
ing to considerable finite size effects. It is possible to leave
out the interface in the Gibbs ensemble, but, as mentioned
above, the simulation of a very dense crystalline phase be-
comes then quite inefficient. On the other hand, it is also
possible to simulate the phases separately and relate them
to each other in terms of the free energy, which, on the
microscopic level, can be written as

F = −kBT ln Z, (33)

where Z is the partition function calculated as a sum over
all microstates of the system weighted according to their
total energy,

Z =
∑
m

e−βEm . (34)

Hence, the probability to find the system in a particular
configuration m with energy Em is given by

P (m) =
e−βEm

Z
= e−β(Em−F ). (35)

Generally, it is impossible to account for all microstates
in one simulation, but the relative frequency of the oc-
currence of macroscopic phases is sufficient to compute
free energy differences. There are, however, some relatively
simple systems for which the free energy can be calculated
analytically. Hence, the computation of the free energy dif-
ference between these systems and others, for which there
is no analytic solution, leads to the absolute value of the
free energy of the sample. Accordingly, methods for the
calculation of free energies can be split into techniques
calculating absolute free energies of individual phases or
free energy differences between them. Phase coexistence
then is characterized by either equal absolute free energies
of two phases or, equivalently, by a vanishing free energy
difference.

The thermodynamic integration method [15, 76, 86] is
widely used for calculation of the absolute free energies of
fluids and solids. In this technique, one defines a coupling
parameter α which allows to gradually transform the sys-
tem from the examined state into the reference state the
free energy of which is supposed to be known. It is im-
portant that the transformation is possible without hys-
teresis. Thus, the state in question and the reference state
should not be separated by a first-order phase transition.
The absolute free energy is then computed by the integra-
tion along a suitable thermodynamic path connecting the
states

F = Fref +
∫ 1

0

dα

〈
dH(α)

dα

〉
α

, (36)

where Fref is the free energy of the reference system. The
Hamiltonian H(α) specifies the pathway between the two
states and is defined such that H(0) corresponds to the
reference state and H(1) to the state we are interested in.
The angular brackets 〈. . .〉α indicate an average calculated
for the value α of the switching parameter. To calculate
the integral in the above equation, several simulations for
different values of α are carried out, in which the average
〈dH(α)/dα〉α is determined. From these values, the inte-
gral is then computed numerically. The exact form of the
H(α) depends on the considered phases. For instance, the
absolute free energy of solids is usually calculated within
the Frenkel-Ladd method [87, 88], where the particles are
coupled to their respective positions in an Einstein crystal
(r0

i ) by harmonic springs with strength α, such that the
modified Hamiltonian reads

H(α) = H0 + α

N∑
i=1

(ri − r0
i )2, (37)

where N is the number of particles. H0 and, thus,
F (α = 0) refer to the real solid, while F (α 
 1) is the
free energy of the Einstein crystal, which is known ana-
lytically. For the determination of coexisting phases, how-
ever, a direct computation of the free energy differences
between the phases turns out to be more precise from the
statistical point of view, since absolute free energies are
rather large numbers and the deviations accumulate [89].

The phase- and lattice-switch Monte Carlo techniques
[90–93] allow to compute free energy differences directly,
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omitting thereby the simulation of the intermediate states
between the coexisting bulk phases. As indicated by the
name, these methods make use of MC moves that allow a
direct switch between the phases. Hence, the system can
freely transform between the states and the correspond-
ing free energy difference is computed from their relative
occurrences:

ΔF = −kBT ln
Z1

Z2
= −kBT ln

P1

P2
, (38)

where Zi and Pi are the partition function and the proba-
bility to find the system in phase i = {1, 2}, respectively.

At coexistence, two phases are stable, occur with the
same frequency, and thus possess the same free energy. If
the average probability of occurrence for one of the states
is smaller than for the other, the first phase is metastable.
The likelihood to find the system in this state at the end of
an unbiased simulation run will depend on the free energy
difference but also on the height of the barrier between
the phases, and, thus, on the rate with which the system
transforms from one to the other. In other words, starting
a simulation from a metastable state, we may stay there
through the whole run if the free energy barrier that has
to be overcome on the way to equilibrium is too high. Sim-
ilarly, if the barrier is low, thermal fluctuations will facil-
itate frequent visits of the metastable state on the time
scale of the simulation. The same applies to coexisting
stable states, where furthermore the position of the criti-
cal point characterized by a vanishing free energy barrier
between the phases, should the examined transition pos-
sess one, can be determined by a finite size analysis [94].
Thus, the shape of the free energy landscape in the region
between the reacting states is of particular importance for
the studies of transition kinetics. In order to assign a set
of physical microstates visited in the course of transition
to one of the reacting phases or to the intermediate region
between them, we need to define a collective variable on
which the free energy is projected. In doing so, we distin-
guish between an order parameter and a reaction coordi-
nate, which may, in some applications, be interchangeable
but serve as such different purposes. Thus, a general dis-
tinction between two phases is usually drawn by means
of an order parameter, which uniquely characterizes the
initial and the final states of a transition. The more spe-
cific reaction coordinate, on the other hand, is continuous
and describes the progress of the reaction at all stages.
The order parameter can be recovered from the reaction
coordinate by assigning all states that are located left and
right of the top of the barrier to the respective reacting
and product states. The barrier itself is constructed by
the projection of the free energy landscape on a reaction
coordinate q, which can be computed from the probability
to find the system at a given stage of transition, defined
according to eq. (35) as

P (q) =
∑
mq

e−β(Emq−F ) = Z(q)eβF , (39)

where mq is the ensemble of microstates contributing to
q (i.e., the microstates in which the reaction coordinate

has the particular value q). The free energy profile is then
given by

F (q) = −kBT ln P (q) + const, (40)

where the constant, which equals the free energy F , in-
dicates that the free energy landscape is measured on a
restricted set of microstates, which belong to some global
ensemble. Thus, the computation of the microscopic distri-
bution of states in the reacting states and along the tran-
sition path yields the shape of the free energy barrier. Un-
fortunately, in a straightforward computer simulation, the
probability to find the system outside of the (meta)stable
states is proportional to the height of the barrier and usu-
ally rather low. Hence, computational methods have been
constructed to estimate the free energy barrier by enhanc-
ing the sampling of these rarely occurring states.

One of the most popular techniques for the calculation
of free energies as a function of a given reaction coordinate
q is the umbrella sampling [95]. In this method, the en-
ergy landscape is biased by a predefined function w(q) to
enhance sampling of less probable states in the transition
region and the real distribution is obtained by reweighing
the simulated distribution via

P (q) = P sim(q)e−βw(q). (41)

Furthermore, the transition region is divided into overlap-
ping windows and each of them is simulated separately
with an appropriate weight function. The complete prob-
ability distribution of states along the barrier is then ob-
tained by matching the computed probability distribu-
tions in the overlapping areas. The success of this ap-
proach depends on the reasonable choice of the weight
function.

In contrast, multicanonical sampling [96] and the
metadynamics scheme [97, 98] use an effective Hamilto-
nian, which is self-consistently adjusted during a simula-
tion run in order to uniformly sample all possible states
along q. The resulting weight function is then simply re-
lated to the free energy landscape. The convergence of
the technique, however, might need some effort. A sim-
ilar approach is followed in the Wang-Landau sampling
method [99–101], but the weights are adjusted to obtain
a flat distribution of the energy. The method allows for
a very precise calculation of the density of states, from
which other thermodynamic quantities of interest can
be calculated. In single and multiple histograms meth-
ods [102, 103], the distributions computed at conditions,
at which the height of the barrier is comparatively low and
the system can easily move between the reacting states,
are reweighed in order to extrapolate the shape of the bar-
rier. Similarly, parallel tempering [104,105], also known as
replica exchange Markov Chain Monte Carlo sampling, al-
lows the exchange of configurations between a number of
systems simulated simultaneously but at different temper-
atures, such that all states in the low-temperature regime
can be accessed. Successive umbrella sampling [106, 107],
which resembles the canonical umbrella sampling in the
use of the windows, computes the relative probabilities
of very narrow regions along a reaction coordinate. In this



Page 12 of 38 Eur. Phys. J. E (2016) 39: 77

case, the free energy differences between the adjacent win-
dows are very small and the sampling can be performed ei-
ther without any weights or with the weights extrapolated
into the next window. The resulting probability distribu-
tion is constructed by successive sampling of all segments
of the path connecting (and including) the reacting states.

3.2 Order parameter and reaction coordinate(s) for
crystallization

In his book on statistical mechanics [108], James P. Sethna
wrote in 2006: “Choosing an order parameter is an art.”
We would like to add that choosing a reaction coordi-
nate turns out to be the next stage of complexity. In sim-
ulations of crystallization it is important to be able to
distinguish between crystalline and liquid regions, ideally
with single-particle resolution. Over the years, many al-
gorithms to detect crystalline structures in computer sim-
ulations have been put forward. Quite recently, Santiso
and Trout [109] presented a framework to construct or-
der parameters for molecular crystals. In parallel, Keys,
Iacovella and Glotzer [110] proposed to use a set of shape
matching functions to identify various structures. Still,
for simple monoatomic system, Steinhardt bond order pa-
rameters [111] provide a rather convenient and widely es-
tablished method for identification of the bulk crystalline
phases. Some years ago, ten Wolde, Ruiz-Montero and
Frenkel [112] modified the scheme in order to account
for local crystallinity, such that the size of the largest
set of connected crystalline particles can be used as reac-
tion coordinate for crystallization. In the original paper,
however, the local crystallinity parameters were only em-
ployed in the examination of the cluster structure, while
the progress of reaction was monitored by means of the
global crystallinity Q6. Some other earlier works [51, 113]
related the order parameter and reaction coordinate to the
global and local structure factors for the purpose of estab-
lishing a connection to experiments. In more recent crys-
tallization experiments carried out using colloids [114],
which behave similarly to atomistic systems [115], particle
positions are determined with high accuracy in real space
such that the comparison between simulations and exper-
iments can be performed by means of Steinhardt bond
order parameters.

In this scheme, structures are analyzed in terms of
spherical harmonics, which provide characteristic struc-
tural finger prints. Each particle is evaluated on the basis
of its neighborhood, which includes all particles which are
closer than a certain distance dth. This value is usually
chosen to correspond to the first minimum of the pair
correlation function in an fcc crystal at coexistence. The
environment of each particle, numbered by the index i, is
then represented by the complex vector

q6m(i) =
1
nb

nb∑
j=1

Y6m (θ(rij), φ(rij)) , (42)

where Y6m(θ, φ) are spherical harmonics, θ(rij) and φ(rij)
are the angular spherical coordinates of a bond rij in a

fixed reference frame. The sum runs over all nb neighbors
of particle i. Then, for every pair of particles i and j, one
computes the normalized scalar product of their complex
vectors q6m,

sij =
∑6

m=−6 q6m(i)q∗6m(j)(∑6
m=−6 |q6m(i)|2

)1/2 (∑6
m=−6 |q6m(j)|2

)1/2
,

(43)
which quantifies the degree of correlation between the
structures surrounding the two particles. If the value of
this product is larger than a certain value sth, the parti-
cles are considered to be connected to each other. A parti-
cle is identified as crystalline, if its number of connections
is larger than a certain threshold nth. Ten Wolde, Ruiz-
Montero and Frenkel [112] chose the threshold values for
the bond strength, sth, and the number of connections,
nth, on the basis of corresponding probability distribu-
tions in the liquid and solid states at coexistence. Once
one knows for each particle whether it is crystalline or
not, one can determine clusters of crystalline particles.
Two crystalline particles that are neighbors are defined to
belong to the same cluster. In a given configuration x (here
x includes the information about the positions of all par-
ticles) there may be several crystalline clusters of different
sizes. The number of particles in the largest one of these
crystalline clusters is then defined as the reaction coordi-
nate to monitor the progress of the crystallization. Note
that this reaction coordinate is a function of the thresh-
old values used to define the crystallinity of individual
particles, n(x; dth, sth, nth). The global crystallinity value
is recovered by

Q6 =

⎛
⎝4π

13

6∑
m=−6

∣∣∣∣∣
∑N

i=1 nb(i)q6m(i)∑N
i=1 nb(i)

∣∣∣∣∣
2
⎞
⎠

1/2

. (44)

This parameter measures the average crystallinity of the
entire sample without giving information about size and
location of local crystalline regions.

The choice to use the complex vector q6m in the above
analysis is a consequence of the six-fold symmetry of
the crystalline states we intend to detect while studying
freezing into fcc and bcc structures. In general, however,
Steinhardt bond order parameters [111] were defined to
address all possible types of crystals. In this respect, if
the final solid state possesses a different symmetry, e.g.,
is a cubic lattice, another complex vector like q4m or q8m

(with m running from −4 to 4 and from −8 to 8, respec-
tively) would be more appropriate. Furthermore, if one is
interested not only in detecting crystals but also in differ-
entiating between various symmetries, a combination of
Steinhardt bond order parameters can be assigned to dif-
ferent lattice types. Recently, Lechner and Dellago [116]
proposed to distinguish locally between fcc, hcp, and bcc
structures by means of a combination of the averaged pa-
rameters q̄4(i) and q̄6(i) defined similarly to the global
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crystallinity above as

q̄4(i) =

⎛
⎝4π

9

4∑
m=−4

∣∣∣∣∣
∑ñb

j=1 q4m(j)
ñb

∣∣∣∣∣
2
⎞
⎠

1/2

, (45a)

q̄6(i) =

⎛
⎝4π

13

6∑
m=−6

∣∣∣∣∣
∑ñb

j=1 q6m(j)
ñb

∣∣∣∣∣
2
⎞
⎠

1/2

, (45b)

where ñb = nb + 1 and the sum runs over the particle i
and its nearest neighbors. In fact, this combination also
detects the liquid state in a unique range of values, such
that one can simultaneously find crystalline clusters and
identify their structure [117].

The reaction coordinate for crystallization defined as
the size of the largest crystalline cluster identified on the
basis of Steinhardt bond order parameters is relatively ro-
bust, handy and has been used widely [49, 53, 117–123].
Still, it has been suggested that this size alone is not suffi-
cient to serve as a reaction coordinate for the crystalliza-
tion transition [53,117,124], and a few variations have been
proposed in the meantime [125–127]. In sect. 5.1, we return
to the issue of the definition and performance of reaction
coordinates for crystallization, but would like to note here
already that, currently, the size of the largest cluster still
scores best in the set of proposed alternatives [55].

3.3 Free energy landscapes are not unique

While the analysis of free energy landscapes (for instance
the free energy F (q) defined above) may yield useful in-
sights, it is important to keep in mind that they are not
unique. In contrast to the energy, which is uniquely de-
fined, free energies always depend on the specific collec-
tive variable (reaction coordinate or order parameter) one
considers [128]. As a consequence, there is no such thing
as the free energy profile. Rather, every collective variable
(or a set of collective variables) has its own free energy
landscape and these landscapes may differ drastically from
each other. In fact, one can make free energy barriers ap-
pear or disappear at will by a simple transformation of
variables. To be more explicit, consider a collective vari-
able q(x) in a system in which the microscopic degrees
of freedom are represented by x. The probability density
function of q is then given by

PQ(q) =
∫

dxρ(x)δ[q − q(x)], (46)

where ρ(x) is the equilibrium distribution and δ(q) is the
Dirac delta function. Note that here we consider a contin-
uous configuration space, while above we have looked at
a discrete set of microscopic states. The free energy (up
to a constant, which we drop in the following since the
change of coordinates does not modify the global ensem-
ble of microstates) as a function of the collective variable
is defined as

FQ(q) = −kBT ln PQ(q). (47)

The choice of the particular collective coordinate is ar-
bitrary, so we may as well consider the free energy as
a function of another collective variable z(x) that is ob-
tained from q(x) by a simple transformation of variables,
z = ϕ[q(x)]. If the transformation is unique (i.e., if the
function ϕ(q) is invertible), no information is lost due to
the transformation. The probability density functions of q
and z are then related by

PZ(z) = PQ[ϕ−1(z)]
∣∣∣∣dϕ−1

dz

∣∣∣∣ . (48)

Accordingly, the free energy FZ(z) = −kBT ln PZ(z) can
be written as

FZ(z) = FQ[ϕ−1(z)] − kBT ln
∣∣∣∣dϕ−1

dz

∣∣∣∣ . (49)

The last term on the right hand side results from the
Jacobian of the variable transformation from q to z and
can be viewed as an entropic contribution that takes
into account expansions and contractions arising from the
transformation. If the transformation of variables is linear,
the Jacobian is constant. It then leads only to an irrelevant
shift but no other change of the free energy profile. If the
transformation is non-linear, however, the form of the free
energy profile is changed and, in particular, barrier heights
change. In fact, by choosing the transformation ϕ(q) ap-
propriately, one can obtain any free energy profile in the
new variable z that one wants. Imagine that we would like
to obtain a certain free energy profile FZ(z). We can get
this particular free energy by choosing the transformation
z = ϕ(q) such that it satisfies∣∣∣∣dϕ−1

dz

∣∣∣∣ = exp
{
−β

[
FZ(z) − FQ[ϕ−1(z)]

]}
. (50)

For instance, we can get a completely flat free energy pro-
file FZ(z) by applying the transformation

ϕ(q) =
∫ q

q0

dq′ exp[−βFQ(q′)]. (51)

In this case,
∣∣∣∣dϕ−1

dz

∣∣∣∣ =
∣∣∣∣dϕ(q)

dq

∣∣∣∣
−1

= exp[βFQ(ϕ−1(z))] (52)

such that eq. (49) implies

FZ(z) = FQ[ϕ−1(z)] − kBT ln exp[βFQ(ϕ−1(z))] = 0.
(53)

Based on this flat free energy profile, we can now go a
step further and transform the uniform probability density
PZ(z) into a distribution PW (w) of an arbitrary shape
by carrying out another change of variables to the new
variable w = ψ(z),

PW (w) = C

∣∣∣∣dψ−1

dw

∣∣∣∣ = C

∣∣∣∣dψ

dz

∣∣∣∣
−1

, (54)



Page 14 of 38 Eur. Phys. J. E (2016) 39: 77

where C is the constant that normalizes the probability
density of z. Choosing

ψ−1(w) =
∫ w

w0

dw′ PW (w′) (55)

and then inverting ψ−1(w) to obtain z = ψ(w) yields the
desired distribution. Concatenation of the two transfor-
mations of variables, w = (ψ ◦ ϕ)(q) = ψ(ϕ(q)), produces
a collective variable w that is distributed according to a
given arbitrary probability density function PW (w). The
particular features of PW (w), and hence of the correspond-
ing free energy FW (w) = −kBT ln PW (w), may be com-
pletely unrelated to the features of the original distribu-
tion PQ(q) and its free energy FQ(q).

To illustrate this important point further, we consider
a variable q that is distributed according to

PQ(q) =
1
Q exp[−βκ(q2

0 − q2)2], (56)

where Q =
∫

dq exp[−βκ(q2
0−q2)2]. The free energy, given

by
FQ(q) = κ(q2

0 − q2)2 + kBT lnQ, (57)

has two minima located at ±q0 separated by a barrier of
height ΔF = κq4

0 located at q = 0. We first carry out the
transformation

z = ϕ(q) =
∫ q

q0

dq′
1
Q exp[−βκ(q2

0 − q′2)2]. (58)

This transformation yields a uniformly distributed new
variable z. We next carry out the second transformation
ψ(z) defined by

ψ−1(w) =
∫ w

w0

dw′
√

βk

2π
exp

(
−βkw′2

2

)

=
1
2

erf

(√
βk

2
w

)
+

1
2

, (59)

where k is a constant and we have chosen w0 so small that
erf(

√
βk/2w0) = −1. Hence the function ψ(z) is given by

ψ(z) =
√

2
βk

erf−1(2z − 1). (60)

The result of the two transformations, carried out one
after the other according to w = (ψ◦ϕ)(q) is a free energy

FW (w) =
βkw2

2
− 1

2β
ln

βk

2π
, (61)

that has only one minimum located at w = 0 and no
barrier at all. The effect of this transformation of variables
is depicted in fig. 5.

As another example for how the choice of reaction co-
ordinates affects the shape of the free energy consider a
nucleation process and imagine that the free energy as a

-2 -1 0 1 2
q

-2

0

2

w

Fig. 5. Effect of a transformation of variables on the free
energy profile for the example discussed in the main text.
The original probability density function PQ(q) is shown as
shaded area on the horizontal axis together with the corre-
sponding bistable free energy FQ(q). Applying the transforma-
tion w = (ψ◦φ)(q), shown as dashed line, yields the probability
density function PW (w) displayed as shaded area on the verti-
cal axis alongside the resulting free energy FW (w), which dis-
plays a single minimum and no barrier. The dot-dashed line is
the Jacobian of the transformation, |dw/dq|. For this example
calculation, the parameters were set to κ = 1, k = 1, q0 = 1,
and β = 3.

function of the nucleus diameter d follows classical nu-
cleation theory (similar to eq. (2) but with reference free
energy set to zero),

FD(d) = πγd2 − π

6
d3ρ|Δμ|. (62)

By taking the derivative of FD(d) with respect to d and
setting it to zero, one finds the size of the critical nucleus

d∗ =
4γ

ρ|Δμ| (63)

and the height of the nucleation barrier

ΔF ∗
D =

16πγ3

3(ρΔμ)2
. (64)

If the droplet diameter d is a good reaction coordinate
for the nucleation process, the volume v = (π/6)d3 of the
nucleus should work as well. According to eq. (49), the
free energy FV (v) as a function of the nucleus volume v is
given by

FV (v) = πγ

(
6v

π

)2/3

− vρ|Δμ| + kBT

3
ln

9πv2

2
. (65)

The last term is the entropic contribution originating from
the Jacobian of the transformation. While this logarith-
mic term also affects the free energy in the barrier region,
the most pronounced changes occur in the limit of small
v. For v → 0, the logarithm goes to −∞ such that the bar-
rier height diverges, ΔF ∗

V = FV (v∗) − FV (0) = ∞. Thus,
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although d and v are uniquely related to each other and
they are expected to serve equally well as reaction coordi-
nate, they lead to completely different barrier heights un-
derlining the arbitrariness of free energy profiles. Despite
this arbitrariness, free energies computed as functions of
particular variables may be very useful in the analysis of
molecular simulations. In such an analysis, however, it is
important to bear in mind the physical significance of the
variables as a function of which the free energy is com-
puted. As discussed in the next section, where we return to
this example, for the computation of nucleation rates the
arbitrariness inherent in the choice of reaction coordinate
is less relevant. In this case, transforming from one reac-
tion coordinate to another leads to simultaneous changes
in the height of the free energy barrier and the dynamical
correction factor, which cancel each other such that the
same nucleation rate is obtained in both cases.

4 Computing nucleation rates

4.1 Macroscopic view

Nucleation is a stochastic process: if a system is repeatedly
prepared in exactly the same macroscopic conditions, the
times needed by the system to convert into the new phase
will be different. When we talk about nucleation rates, we
quantify the average time we have to wait to see this new
phase. This time is related to the nucleation rate J via

〈t〉 =
1

JV
, (66)

where V is the volume of the sample. Thus, the nucleation
rate J is the average number of nucleation events occur-
ring per unit time and unit volume. We will also consider
the rate constant for nucleation, k, defined as the aver-
age number of nucleation events occurring in a system,
but not normalized by the volume. J and k are related by
k = JV .

As discussed earlier, the crucial event during the nu-
cleation process is the crossing of the free energy barrier
associated with the formation of the critical nucleus. For
high barriers, this is a rare event similar to a chemical reac-
tion, where some activation energy is needed to transform
reactants (A) into products (B). On the macroscopic level,
the kinetics of such reactions is well captured by so-called
kinetic equations, which describe the time evolution of the
populations in the reactant and product states. Since we
will use these concepts later to introduce methods for an
efficient simulation of rare events, we will first write down
the kinetic equations for a general two-state system.

Consider many copies of a system that can exists in two
different states, A and B, for instance a molecule in solu-
tion with two different conformations between which rare
transitions occur. The concentrations of the two species,
cA and cB , then evolve in time according to

dcA(t)
dt

= −kA→BcA(t) + kA←BcB(t), (67a)

dcB(t)
dt

= −kA←BcB(t) + kA→BcA(t), (67b)

where kA→B and kA←B are the forward and backward
rate constants for the reaction A ⇀↽ B, respectively. By
constructing these equations, one just assumes that the
number of transitions per unit time from A to B is pro-
portional to the population in A and the proportionality
constant is the rate constant. Similarly, the number of
transitions per unit time from B to A is proportional to
the population in B. Thus, the gain and loss terms in the
above equations arise from the transitions between the two
states.

In equilibrium, the concentrations of the two sub-
stances do not change with time and their ratio is equal
to the ratio of backward and forward rate constants:

〈cA〉
〈cB〉 =

kA←B

kA→B
. (68)

Here, the angular brackets 〈. . .〉 denote the equilibrium
value of the respective concentration.

To determine the rate constants one usually prepares
the system in one of the reaction states, say A, and moni-
tors its decay into the second state, B. Starting from such
an initial state the relaxation of the concentrations to-
wards the equilibrium state is given by

cA(t) = 〈cA〉 + [cA(0) − 〈cA〉] exp (− [kA→B + kA←B ] t) ,
(69a)

cB(t) = 〈cB〉 [1 − exp (− [kA→B + kA←B ] t)] . (69b)

Hence, the approach to equilibrium is determined by the
reaction time

τ−1
rxn = kA→B + kA←B , (70)

which depends on both the forward and the backward re-
action rate constants. Using eq. (68), the reaction time can
be expressed in terms of the equilibrium concentrations,

τ−1
rxn = kA→B + kA←B = kA→B

〈cA〉 + 〈cB〉
〈cB〉 . (71)

The kinetic equations written down above apply to
the general case, where the system constantly fluctuates
between A and B. In the case of crystallization, how-
ever, once the nucleation has occurred and the crystal has
formed it never returns to the metastable liquid (unless
the conditions are changed). In such irreversible cases,
the backward rate constant (kA←B) vanishes effectively
and the evolution of concentrations is given by

cA(t) = cA(0) exp (−kA→Bt) , (72a)
cB(t) = cA(0) [1 − exp (−kA→Bt)] . (72b)

The average waiting time of eq. (66) for the decay of the
initial state then corresponds to the reaction time and is
given by the inverse of the rate constant kA→B ,

τrxn = k−1
A→B . (73)

In the following, we present a number of methods used
in computer simulations to calculate stationary reaction
rate constants. We restrict the analysis to the forward
rate constant kA→B , since the backward rate kA←B can
be obtained in the same way.
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4.2 A pedestrian approach

The most straightforward way to determine rate constants
is, of course, to allow the system to fluctuate between the
reactant and product states in a long MD simulation. One
then simply counts the number of jumps out of the initial
state and determines the time spent there. The reaction
rate constant is then calculated according to its definition
as

kMD
A→B =

nA→B

tA
, (74)

where nA→B is the number of jumps out of the reactant
state and tA is the total time spent in the reactant state.

The catch of this approach is in the time scale. The
transition under study usually is not only a stochastic but
also a rare event and the frequency of its occurrence de-
pends on the height of the free energy barrier between the
states. To transform from one state into the other, the sys-
tem has to reach the top of the free energy barrier either
by a single rather large statistical fluctuation or by a se-
ries of smaller fluctuations, which consequently drive the
system towards the critical state on top of the free energy
barrier. The probability of both scenarios decreases expo-
nentially with the free energy difference between the initial
and the critical states. Therefore, if the free energy barrier
between the reacting states is relatively high, the system
will spend a substantial amount of simulation time in one
of the basins of attraction. In this case, the collection of
reasonable statistics for a reliable estimation of reaction
rate constants requires an unrealistically long simulation
run, a large part of which is spent in the stable states and
does not contribute to the analysis. Hence, for a successful
calculation of the rate constants in a long MD simulation
run, the free energy barrier should be relatively low and
the forward and backward reaction rate constants com-
parable. These requirements make the technique specifi-
cally unsuitable to study the decay of metastable states,
in which the system virtually never returns to A after
reaching B.

4.3 Mean first-passage time

As discussed in sect. 2.2, in 1940 Kramers [38, 39] pro-
posed to model chemical reactions as the process in which
a Brownian particle escapes from a potential well over a
barrier. Therefore, the probability density of the particle
position q moving on the potential energy U(q) evolves ac-
cording to the Smoluchowski equation. By applying this
formalism to the calculation of nucleation rates, the po-
tential energy U(q) is identified with the free energy de-
termined as a function of the reaction coordinate q.

In sect. 2.2, we considered the mean time to reach an
absorbing boundary located beyond the barrier for the
first time. Instead, one can also consider the mean first-
passage time τ(q∗) through a boundary located exactly at
the top of the barrier, q∗. Then the reaction rate constant
for an escape from A is given by

kMFPT
A→B =

1
2τ(q∗)

. (75)

The factor of 1/2 arises from the fact that the probabil-
ity to proceed to the final state from the transition state
equals the probability to relax back into the initial state.

In general, the mean first-passage time τ(q) to reach a
certain point q starting from point q0 is given by [41]:

τ(q, q0) =
∫ q

q0

dy
1

D(y)
exp[βU(y)]

∫ y

a

dz exp[−βU(z)],

(76)
where we have again assumed that there is a reflecting wall
left of the potential well. Provided that the relaxation in
the potential well is fast compared to the escape time, the
mean first-passage time to reach a point q near the barrier
is the same for all initial points q0 in the well region. Using
the same approximations employed in sect. 2.2 one can
show that for values of q near the top of the barrier the
MFPT as a function of q is given by the function

τ(q) =
τJ

2
[1 + erf ([q − q∗] c)] , (77)

where erf(z) = (2/
√

π)
∫ z

0
exp(−y2)dy is the error func-

tion and c =
√

β|U ′′(q∗)|/2 is the respective local cur-
vature, which also determines the Zeldovich factor intro-
duced in CNT via Ze = c/

√
π (see eq. (15)).

The above equation for the mean first-passage time
can be used for the calculation of reaction rates provided
that the free energy barrier is not too high, as suggested
by Wedekind, Strey and Reguera [129]. In this approach,
one prepares a number of representative configurations in
A and starts MD simulations from each of them, follow-
ing the systems until they cross the barrier and reach B.
From these trajectories the mean first-passage time is then
calculated as a function of the reaction coordinate q and
subsequent fitting of eq. (77) to the simulation data with
τJ , q∗, and c as variational parameters yields the reaction
rate constant as

kMFPT
A→B =

1
τJ

. (78)

The situation considered in this approach is illustrated in
fig. 6.

This MFPT technique can be extended to reconstruct
the free energy landscape underlying the reaction from the
collection of nucleating trajectories [130]. Unfortunately,
the application of the analysis is quite limited by the pre-
scription of the functional form of the MFPTs, which
is valid only for substantially high and symmetrical nu-
cleation barriers, where the simulation data are well de-
scribed by eq. (77). It has, however, been shown that the
analysis is feasible even though more involved for transi-
tions in which the time scales of nucleation and growth are
not well separated [131, 132]. The occurrence of this case
can be clearly seen in the MFPT computed from the simu-
lation, which then does not display a plateau after passing
the transition region but increases continuously with the
rate of growth. Aside from that, in the illustrative example
below, we demonstrate that also a poor choice of the re-
action coordinate makes the application of this technique
unreliable [133].
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Fig. 6. Sketch of the Kramers approach [38, 39]. Diffusion of
the system along a potential energy landscape U(q) is described
by the Fokker-Planck equation with a reflecting boundary fixed
at a and a moving absorbing boundary b. The reaction rate
is inversely proportional to twice the mean time required to
escape through b = q∗ when starting at q0 (eq. (75)). For a
sufficiently high barrier, the MFPT τ(q) can be approximated
by an error function (eq. (77)).

Furthermore, there is the mean lifetime (MLT) [134]
or direct observation method [135], which is based on the
same formalism as the original MFPT analysis and em-
ploys the times that are measured for states well beyond
the transition region. Similar to the approach introduced
by Wedekind, Strey and Reguera, this method does not
rely on the exact definition of the transition state [136]
and allows a distinction between nucleation and growth
regimes [132]. Assuming that the times to reach a partic-
ular state are Poisson distributed, simulated values for the
probability to observe the transition to B in a given time
interval are fitted to the distribution

H(t|q ∈ B) = gt exp(−ht), (79)

using g and h as fitting parameters. The reaction rate
constant kA→B is then equal to h:

kMLT
A→B = h. (80)

The calculation of reaction rates with mean first-pas-
sage times and mean lifetimes is suitable for comparatively
small nucleation barriers, such that at least one transition
event can be observed on the time scale of reasonably long
straightforward MD simulations. In comparison to a single
simulation with multiple transitions, this approach does
not require an equilibrium between the reactant and the
product states and can be applied for calculation of the
decay rates of metastable states. For most applications,
however, the free energy barrier between the states will

be rather high, and the transition events truly rare. One
of the possibilities to deal with such cases is the Bennett-
Chandler method, based on transition state theory.

4.4 Transition state theory (TST)

At about the same time as Kramers introduced the idea
of viewing chemical reactions as diffusion processes, the
concepts of the transition state theory [46,137–139] (for a
review on its evolution, see ref. [140]) were developed on
the basis of thermodynamic rather than kinetic (in con-
trast to MFPT) considerations. Still, both theories are
closely connected and in fact, as has been shown later,
Kramers rate expression can be derived in the framework
of TST [141]. Central to the idea of TST is the concept of
a transition state, a point on top of the barrier that has
to be crossed during the transition. To be more precise, in
TST the transition state, or activated state, is character-
ized as a saddle point in the free energy landscape, such
that the curvature is negative only for one degree of free-
dom, which corresponds to the reaction coordinate. One
can then place an imaginary surface perpendicular to the
direction of the reaction coordinate (fig. 7) and identify all
states that lie on this surface as belonging to the transi-
tion state ensemble. Considering only trajectories passing
through this surface that started in the initial state, the
reaction rate constant is then deduced from the ratio of the
partition functions of the activated (Z∗) and initial (ZA)
states, multiplied by the average velocity, 〈v∗〉, with which
the activated complex slides across the dividing surface:

kTST
A→B = κ〈v∗〉Z∗

ZA
. (81)

The prefactor κ was initially introduced by Eyring [137] to
account for the possibility of recrossings, but was subse-
quently set to unity. The derivation of its precise form fol-
lowed only decades later [46] and resulted in the Bennett-
Chandler routine [45, 46] to correct the values of reaction
rate constants computed with TST, which we discuss in
detail below.

In computer simulations [15], the ratio of the parti-
tion functions and the flux through the dividing surface
are computed separately. In doing so, the average velocity
of the activated complex is determined by preparing an
ensemble of configurations at the top of the free energy
barrier and considering the velocities only of those config-
urations that relax to the product state. The calculation
of the ratio of the partition functions corresponds to the
computation of the probability to find the system on the
top of the free energy energy barrier sampled in the initial
state ensemble. Using the free energy F (q) computed as
a function of the reaction coordinate q (for instance, with
one of the methods mentioned in sect. 3.1), the TST rate
can be written as

kTST
A→B =

1
2
〈|q̇|〉q=q∗

e−βF (q∗)∫ q∗

−∞
e−βF (q)dq

, (82)
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Fig. 7. Schematic illustration of a reaction considered in TST.
The initial state A is separated from the product state B by a
dividing surface, which is placed perpendicularly to the reac-
tion coordinate at the saddle point of the free energy landscape.
The reaction rate constant is the product of the probability to
find the system in the activated state, i.e., at the dividing sur-
face, and the mean velocity of all trajectories crossing q∗ in
the direction of B. On short time scales, correlated recrossings
of the dividing surface may occur, effectively reducing the flux
out of A. The Bennett-Chandler approach corrects for such
recrossings.

where the conditional average 〈. . .〉q=q∗ is calculated sep-
arately in a system restricted to the top of the free energy
barrier. The absolute value of |q̇| (with a factor of 1/2)
utilizes all configurations at the dividing surface instead
of only those with a positive velocity. This replacement is
justified if the reaction coordinate does not depend on the
momenta of particles and the dynamics of the system is
time reversible. The form of the equation closely resembles
the CNT rate in eq. (4), giving another interpretation of
the kinetic prefactor K.

The fundamental problem of this TST approach is
that it is based on the assumption that any trajectory
crossing the dividing surface coming from the reactant
side will relax into the product state. In practice, how-
ever, fluctuations on the molecular time scale will induce
some correlated recrossings of the dividing surface, caus-
ing TST to overestimate the reaction rate constant. Ad-
justing the dividing surface to minimize the number of
recrossings, as proposed by the variational TST [142],
reduces the deviation, but an accurate rate can be de-
termined in this way only if a dividing surface exists
that excludes recrossings completely. In most cases, such
an optimum dividing surface does not exist [143]. It is,
however, possible to account for the recrossings directly,
as it is done in the Bennett-Chandler approach [46] ex-
plained in the next section, which combines the concepts
of TST with information obtained from dynamical trajec-
tories.

4.5 Bennett-Chandler method (TST-BC)

The Bennett-Chandler approach is a computational meth-
od that permits the exact (up to statistical errors) calcu-
lation of rate constants. In this method, one imagines to
have a reaction coordinate q, which changes continuously
as the transition proceeds from reactant to the product
state. Based on this reaction coordinate, one defines char-
acteristic functions for the reactant state, A, and the prod-
uct state B,

hA(q) = θ (q∗ − q) =

{
1, if q < q∗,

0, else,
(83a)

hB(q) = θ (q − q∗) = 1 − hA(q), (83b)

where θ(q) is the Heaviside theta function. The functions
hA and hB indicate whether a configuration with reaction
coordinate q lies on the reactant or product side of the di-
viding surface located at q = q∗. Using these characteristic
functions, the time correlation function C(t), i.e., the con-
ditional probability to find the system in state B at time
t provided that it was in A at time 0, can be expressed as

C(t) =
〈hA[q(0)]hB [q(t)]〉

〈hA〉
. (84)

Here, 〈hA〉 = 〈cA〉/(〈cA〉 + 〈cB〉) is the fraction of equi-
librium concentration in A as introduced in eq. (68). If
a system is prepared such that cB = 0 initially, the time
evolution of the product concentration can be expressed
in terms of the correlation function,

cB(t) = (〈cA〉 + 〈cB〉)C(t). (85)

As mentioned above, original TST assumes that all trajec-
tories connecting A and B cross the dividing surface only
once. For time scales longer than the typical time scale
τmol of molecular fluctuations, one expects the popula-
tions to evolve according to the rate equations (69). Thus,
in the time interval τmol < t 	 τrxn, the comparison of
eqs. (69b) and (85) yields

C(t) = 〈hB〉 [1 − exp (− [kA→B + kA←B ] t)] . (86)

For times t that are larger than τmol but still much smaller
than the reaction time τrxn = (kA→B + kA←B)−1, this
expression reduces to

C(t) ≈ kA→Bt. (87)

Thus, for times larger than the time scale of molecu-
lar fluctuations, when all correlated recrossings have oc-
curred, the time derivative Ċ(t) is equal to the reaction
rate constant,

kTST−BC
A→B =

dC(t)
dt

∣∣∣∣
t>τmol

. (88)

Using the definition given in eq. (84) and exploiting the
time translation invariance of the correlation function, the



Eur. Phys. J. E (2016) 39: 77 Page 19 of 38

time derivative of the correlation function C(t) can be
expressed as [46]

dC(t)
dt

=
〈q̇(0)δ [q(0) − q∗] hB[q(t)]〉

〈hA〉
. (89)

If recrossings are neglected, the passages through the
dividing surface become uncorrelated in time and we can
take the limit t → 0, in which the difference in hB[q(t)] =
θ[q(t)−q∗] is replaced by the derivative θ[q̇(0)], thus, elim-
inating the time dependence:

kTST
A→B =

〈q̇(0)δ [q(0) − q∗] θ[q̇(0)]〉
〈θ(q∗ − q)〉 . (90)

In this approximation, the reaction rate constant can be
determined using only equilibrium averages without the
need to calculate dynamical trajectories. Dividing and
multiplying the above formula with the factor 〈δ(q∗ − q)〉
yields

kTST
A→B =

〈q̇(0)δ [q(0) − q∗] θ[q̇(0)]〉
〈δ(q∗ − q)〉 × 〈δ(q∗ − q)〉

〈θ(q∗ − q)〉 . (91)

Thus, we recover the TST expression of eq. (82), since
the first factor on the right hand side corresponds to the
expectation value of the positive velocity and the second
term is the conditional probability to find the system at
q∗. The deviation of the TST estimate from the exact
value of the rate constant, for instance computed using
the Bennett-Chandler approach, is described by the trans-
mission coefficient

κ =
kTST−BC

A→B

kTST
A→B

. (92)

Since TST always overestimates the reaction rate con-
stant, the transmission coefficient is a number between 0
and 1. The more correlated recordings occur, the smaller
is the transmission coefficient κ, which roughly measures
the fraction of crossings of the dividing surface that lead
to successful transitions from reactants to products.

Transition state theory and its more sophisticated vari-
ants such as the Bennett-Chandler approach rely on the
knowledge of a good reaction coordinate capable of de-
scribing the progress of the reaction in consideration.
(Poor choices of the reaction coordinate lead to a transmis-
sion coefficient that is statistically indistinguishable from
zero.) For complex systems, however, such a reaction co-
ordinate often cannot be identified beforehand. Then, the
mechanism and kinetics of the reactions can be studied
with transition path sampling, a computational method-
ology based on the statistical description of ensembles of
trajectories which does not require a priori knowledge of
the reaction mechanism and the definition of a valid reac-
tion coordinate. The transition path sampling method is
the subject of the next section.

4.6 Transition path sampling

The central idea of transition path sampling (TPS) [144–
149] is to define the transition path ensemble (TPE), the

set all trajectories connecting the initial and the final
states. To every trajectory in this ensemble one assigns
a statistical weight, which depends on the underlying dy-
namics as well as on the distribution of states from which
the trajectories can start. The trajectories of the transi-
tion path ensemble are then sampled using a Monte Carlo
procedure that generates a Markov chain of pathways, oc-
curring according to the statistical weight they have in
the transition path ensemble. The harvested trajectories
can then be analyzed to reveal the microscopic mecha-
nism of the transition and identify a good reaction co-
ordinate that captures the essential mechanistic features.
The transition path sampling framework allows also the
calculation of reaction rate constants without the need to
define a valid reaction coordinate. A detailed account on
the basic principles of transition path sampling as well
as practical issues arising in its implementation can be
found, e.g., in ref. [147]. In the following, we will focus on
the use of transition path sampling for the calculation of
reaction rate constants and, in particular, nucleation rates
for crystallization.

In TPS, every trajectory x(t) is composed of a se-
quence of N +1 microscopic states, or time slices, xτ , and
has a time length t = NΔt. Here, xτ indicates the state
of the system at time τ along the path, specified either
by the position of all particles in the system, xτ = {r},
or by their positions and momenta, xτ = {r, p}, and Δt
is the time interval between subsequent states. The dy-
namics underlying the time evolution of the pathways is
assumed to be Markovian, such that the probability of a
given trajectory is

P[x(t)] = ρ(x0)
t/Δt−1∏

i=0

p(xiΔt → x(i+1)Δt), (93)

where ρ(x0) is the distribution of the initial conditions and
p(xτ → xτ+Δt) are the single time step transition prob-
abilities. Both of these probabilities are normalized and
depend on the specific details of the system that is consid-
ered. Note that most types of dynamics usually considered
in computer simulations, including Newtonian, Langevin
or Monte Carlo dynamics, are Markovian such that they
can easily be treated in the TPS framework.

In contrast to the methods for calculation of reac-
tion rates discussed previously, TPS does not follow the
progress of a transition along a predefined reaction coordi-
nate but rather samples trajectories connecting spatially
separated regions A and B, which are identified by means
of a suitable order parameter. These regions do not need
to be adjacent like the regions considered in TST and re-
lated approaches. Accordingly, we redefine the auxiliary
functions (see eq. (83)), which indicate whether a state x
belongs to regions A and B, respectively:

hA(x) =

{
1, if x ∈ A,

0, else,
(94a)

hB(x) =

{
1, if x ∈ B,

0, else.
(94b)
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Fig. 8. Stable states A and B and various trajectories consid-
ered in TPS. The borders of the initial and the final states of
the reaction are defined by means of a suitable order parameter
which differentiates between them, but no further assumptions
are made about the reaction coordinate. The probability PAB

to observe a given pathway connecting A and B is the prod-
uct of all single time step transition probabilities (eq. (95))
and the probability of the initial state. Trajectories connecting
A and B may have a finite statistical weight while all other
trajectories are assigned a weight of zero in the TPE.

Using these functions, the probability of a trajectory x(t)
in the TPE is given by (see also fig. 8)

PAB [x(t)] =
hA(x0)P[x(t)]hB(xt)

ZAB
, (95)

where the partition function ZAB of the paths connecting
the initial and the final states of the reaction is defined as

ZAB(t) =
∫

Dx(t)hA(x0)P[x(t)]hB(xt) (96)

and the integration∫
Dx(t) =

∫
. . .

∫
dx0dxΔtdx2Δt . . . dxt (97)

is performed over all states along a trajectory. Note that
all pathways not starting in A and ending in B are as-
signed a statistical weight of zero in the TPE. Accordingly,
the sampling of the TPE yields only reactive trajectories,
i.e., trajectories connecting the two regions.

The time correlation function defined in eq. (84), which
contains all the information needed to determine the reac-
tion rate constant, can be rewritten in the TPS framework
as the ratio of two path ensemble averages:

C(t) =

∫
Dx(t)P[x(t)]hA(x0)hB(xt)∫

Dx(t)P[x(t)]hA(x0)
. (98)

Hence, the time correlation function C(t) can be viewed
as the fraction of all paths of length t starting in the ini-
tial state that make it to the final state of the reaction.
Note that the denominator in the above equation does not
depend on time since, due to the normalization of the sin-
gle time step probabilities used in the dynamical weight

P[x(t)], it effectively reads
∫

dx0hA(x0)ρ(x0), which is the
equilibrium population in A, 〈hA〉. In principle, C(t) can
be calculated by starting trajectories of length t in A and
counting how many of them reach B. In most interest-
ing cases, however, the transition from A to B is a rare
event and this straightforward approach is impractical. In-
stead, we first transform the expression for the time cor-
relation function C(t) into a form that is more convenient
for computations. In order to do so, we introduce an or-
der parameter λ(xτ ) that can describe the product state
B = {xτ : λB

min < λ(xτ ) < λB
max} or the entire configura-

tion space, −∞ < λ(xτ ) < ∞, including A. Substitution
of the indicator function hB(xτ ) into eq. (98) and change
of the integration order lead to

C(t)=
1

〈hA〉

∫
Dx(t)P[x(t)]hA(x0)

∫ λmax

λmin

dλδ [λ − λ(xt)]

=
∫ λmax

λmin

dλ〈δ [λ − λ(xt)]〉A =
∫ λmax

λmin

dλPA(λ, t),

(99)

where 〈. . .〉A denotes the path average over all trajecto-
ries originating in A. The function PA(λ, t) is the prob-
ability that at time t a path has reached λ, provided it
started in A at time 0. The transition in question is a rare
event and only a few trajectories of the whole ensemble
will eventually end in B. Thus, in practice, the calcula-
tion of the probability distribution is performed by um-
brella sampling method [95], appropriately reformulated
for transition pathways. The entire range of order param-
eter λ(xτ ) is divided into overlapping windows Wi with
λmin

i < λ(xτ ) < λmax
i and the weighted probability to

reach a particular window is calculated as

PAWi
(λ, t) =

∫
Dx(t)P[x(t)]hA(x0)hWi

(xt)δ [λ − λ(xt)]∫
Dx(t)P[x(t)]hA(x0)hWi

(xt)

= 〈δ [λ − λ(xt)]〉AWi
.

(100)

The distributions in adjacent windows are matched and
normalized to yield PA(λ, t), of which the section belong-
ing to B is used to calculate the time correlation function
C(t) via eq. (99).

The reaction rate constant is then determined, in a
way similar to the TST-BC method (eq. (88)), as the time
derivative of the correlation function at time scales larger
than τmol. Since, however, the technique of evaluation of
C(t) for a fixed time t specified above is rather involved
to be applied to all times in order to numerically derive
this function, a computationally more convenient modi-
fication [144, 150] can be employed for the calculation of
time derivative. The variation consists in the shift of the
time dependence into a prefactor, which is computed in a
path sampling simulation with a fixed length t:

C(t) =
〈hB(t)〉AB

〈hB(t′)〉AB
C(t′). (101)
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In this way, the computationally expensive umbrella path
sampling simulation has to be performed only for a single
time t′, which can be much shorter than t. The reaction
rate constant then reads

kTPS
A→B =

〈ḣB(t)〉AB

〈hB(t′)〉AB
C(t′)

∣∣∣∣∣
t>τmol

. (102)

This method for the calculation of reaction rate constants
in the framework of TPS is computationally demanding.
An improvement in efficiency can be obtained with the
transition interface sampling method explained in the next
section.

4.7 Transition interface sampling (TIS)

In the transition interface sampling method [151–154], the
requirement of a fixed length for trajectories is relaxed
and the integration of pathways stops when the system
reaches certain points in phase space. This is achieved by
dividing the phase space between the initial and the final
state of the reaction into windows, similar to those used
in TPS for the calculation of the time correlation function
in eq. (100) but not overlapping. The multidimensional
interfaces that limit the windows, and give the method its
name, are placed at fixed values of the order parameter,
λ(x) = λi, such that the borders of the reactant state A
and the product state B coincide with the first λA = λ0

and the last λB = λn interfaces, respectively. In every
window, the sampling is restricted to paths coming from
the border of the initial state and crossing the left interface
(i.e., the interface closer to the reactant) of the window
(the concept is also sketched in fig. 9).

In the derivation of the TIS formalism, the reaction
rate constant is defined as the positive steady flux through
the border of the product state B, λn. One can then ex-
pand the region of the final state by adding adjacent win-
dows successively, such that, in the first step, the product
state is defined by λ(xτ ) > λn−1 and the flux is reduced by
a factor that accounts for the number of paths that pass
the λn−1 interface but return to λ0 before reaching λn.
The procedure is repeated for every window, and finally
the interface λ1 is placed so close to the initial state that
the flux through it can be easily computed in a straight-
forward MD simulation carried out in the reactant state.
The reaction rate constant is then given by the product of
the flux out of the initial state, Φ1,0, and the probability to
end in the product state, PA(λn|λ1), under the condition
that the trajectories reaching λn originate in the reactant
state and cross the first interface λ1:

kTIS
A→B = Φ1,0PA(λn|λ1). (103)

The last term is the product of all probabilities to reach
the next interface after crossing the previous one, starting
with λ1, for which the reactive flux is known, and going
through the whole phase space between the reacting states
to the border of the product state,

PA(λn|λ1) =
n−1∏
i=1

PA(λi+1|λi). (104)

Fig. 9. Sketch of the TIS paths. The region between the initial
and the final states is subdivided into non-overlapping windows
by placing multidimensional interfaces at increasing values of a
suitable order parameter λ. The first interface, corresponding
to λA, and the last interface, corresponding to λB , are the bor-
ders of the reactant and the product states, respectively. All
paths sampled in one window cross its left interface (λi−1) com-
ing directly from A. The integration of a trajectory is stopped
when the system reaches either the next interface (λi) or the
border of the initial state.

In practice, not all probabilities to reach the next inter-
face have to be computed, since, as soon as the system
has crossed the transition state region between the states
(wherever it should lie), all paths reaching a window will
continue towards the product state B yielding a progres-
sion probability of unity. At this stage, the conditional
probability PA(λn|λ1) saturates to a plateau and the sam-
pling of the remaining windows can be omitted.

For the analysis of the transition mechanism, one re-
covers the ensemble of transition paths, similar to the one
of TPS, by letting the paths from the last simulated win-
dow evolve until they reach B.

For reactions that occur diffusively, transition path-
ways may become very long hampering their sampling
within a TIS simulation. To overcome this problem,
the partial path transition interface sampling (PPTIS)
method was developed [155, 156]. This method, which is
applicable if segments of pathways in different windows
are statistically independent from each other, also allows
to simultaneously sample the free energy landscape un-
derlying the reaction.

The sampling of paths in TPS and TIS requires that
the reacting system is in microscopic equilibrium, i.e., the
dynamics of the trajectories is time reversible. Although
the framework of TPS has been reformulated to address
systems out of equilibrium [157], another method, namely
the forward flux sampling, was purposely designed to in-
vestigate such systems.

4.8 Forward flux sampling

The forward flux sampling (FFS) technique [158–162]
deals with stochastic non-equilibrium systems, without
requiring knowledge of the phase space density. The for-
malism for the calculation of the rate constant is identical
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Fig. 10. Sketch of FFS paths. In a window, defined similar
to TIS, the trajectories start from configurations (indicated by
stars) at the left interface (λi−1) and end either in the initial
state or at the next interface (λi). Endpoints of the pathways
that terminate at the right border are stored to be used in the
simulations of the next window.

to TIS (eq. (103)), but the reaction paths are produced in
a different way.

Given a set of non-overlapping interfaces, identical to
those used in TIS, the flux out of the initial state is cal-
culated in a straightforward MD simulation. Along the
way, configurations at the first interface are stored in or-
der to be used as starting points for trajectories of the first
window. Then, in the direct FFS [158, 159] illustrated in
fig. 10, a number of trajectories is started from randomly
selected configurations and the fraction of pathways evolv-
ing to the next interface instead of returning to the initial
state contributes the conditional probabilities PA(λi+1|λi)
used in eq. (104). Configurations at the endpoints of tra-
jectories that reached the next interface are again col-
lected as starting points for the probability calculation in
the next window. At the end, continuous transition paths
are constructed by joining the pieces which belong to the
neighboring windows.

There are also alternative FFS sampling schemes, like
branched growth or the Rosenbluth method [159], that
first generate complete (branched) paths by starting trial
runs from the configurations at interfaces and subse-
quently sample the conditional probabilities PA(λn|λ1)
from averages over these paths. Unfortunately, the perfor-
mance of FFS strongly depends on the proper definition of
the first-interface ensemble and an insufficient sampling at
this stage might propagate (without evident indications)
through the whole analysis even in very simple systems as
has been demonstrated in a recent review by van Erp [163].
In contrast, TPS and TIS methods do not suffer from this
shortcoming, since they allow for backward shooting and
the trajectories are able to relax in both directions.

4.9 Evolution of methods

The methods discussed above were presented roughly
sorted according to their increasing computational costs,
but at the same time their order mirrors, to some de-
gree, the historical development of the field. The more

recent techniques are more accurate and reliable but also
rather involved and only applicable due to the availabil-
ity of powerful computers. However, the performance of
these methods is still not sufficient to enable the analysis
of rare transitions in arbitrary systems, since the demand
for more realistic representation of the underlying poten-
tial energy surface evolves along with the increase of the
complexity of the methods. Thus, even with the vast com-
puting power available today, one has to choose methods
that find a compromise between speed and accuracy, and
provide as much information on the details of the system
as possible. Hence, although the application of transition
path sampling techniques yields more information about
the reaction in question, less involved techniques based on
transition state theory or on the Kramers approach have
their virtue in being relatively fast and, in some cases,
as precise as TPS in the calculation of reaction rate con-
stants. Furthermore, the development and improvement
of TPS related techniques is still going on [164]. Cur-
rently, one can observe two routes followed in the devel-
opment of new methods. While one is concerned with the
increase of the sampling efficiency, the other one is di-
rected towards including non-standard types of dynamics
and aims to release the equilibrium and steady state as-
sumptions.

Along these lines, TPS has been expanded to include
parallel tempering of pathways [165] and permutation
shooting [166], explore reactions on diffusive free energy
barriers [167–170], perform aimless shooting [171, 172],
and sample pathways connecting multiple stable states
[173]. In addition, TPS was combined with the Wang-
Landau algorithm for simultaneous sampling of different
temperatures [174] and biased dynamics to steer the sam-
pled trajectories towards the transition [175]. The effi-
ciency of TIS has been increased by optimized interface
placement [176] and using several path replica exchange
algorithms [153,154,177,178], which additionally facilitate
sampling of multiple states and reaction channels. FFS
has been extended to apply to non-stationary [179, 180]
states, simultaneously compute stationary probability dis-
tributions and rates in non-equilibrium systems [181], and
optimized to reduce the computational cost by adaptive
choice of the number of trial runs at each interface as well
as of the position of interfaces [182].

Of course, there are many more methods for the es-
timation of reaction rate constants including mileston-
ing [183, 184], the weighted ensemble method [185–187],
non-equilibrium umbrella sampling [188], discrete path
sampling [189, 190], or barrier method [191], just to men-
tion a few of them. There are also methods which were
developed to study driven systems [192] and non-steady
states [193].

While many methods are available to study rare tran-
sitions in complex systems, the choice of the right method
is an important issue. In fact, as we will demonstrate in
the following using the crystallization of a Lennard-Jones
liquid as example, using a selection of inappropriate meth-
ods may lead to invalid results that may seem acceptable
at first sight.
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4.10 Crystallization rates of a supercooled LJ fluid

Along with the freezing of hard spheres, the freezing of
a supercooled monodisperse LJ fluid is the crystallization
transition most studied with computer simulations. Up to
date, crystal nucleation rates for the LJ system have been
calculated with TST-BC [47], MFPT [71], MLT [134,194],
FFS [121], TPS [72], and (PP)TIS [53] methods. Yet, the
degree of supercooling, the pressure, and other parameters
used in these simulations varied from work to work, such
that a direct comparison of the results is feasible only in
a few cases.

For example, Lundrigan and Saika-Voivod [71] found
that free energy barriers obtained with umbrella sam-
pling are consistent with those extracted from the MFPTs
according to the scheme proposed by Wedekind and
Reguera [130]. Likewise, the attachment rates to the crys-
talline cluster at the top of the free barrier computed
within the TST-BC and MFPT frameworks were found
to be similar. There was, however, a disagreement in the
position of the transition state compared to the results
presented by Wang, Gould and Klein [54], who previously
also used umbrella sampling to compute the free energy
landscape at the same conditions. The authors explained
this discrepancy by different criteria used to identify crys-
talline clusters.

At different conditions, Moroni, ten Wolde and Bolhuis
[53] computed the rates using the TIS and PPTIS tech-
niques and found good agreement between them. The
free energy barrier computed within PPTIS was, however,
about 5 times higher than the one calculated previously
with the umbrella sampling method by ten Wolde, Ruiz-
Montero and Frenkel [47]. As for the comparison of the
reaction rate constants obtained with the TST-BC and
(PP)TIS methods, the former crystallization rate was or-
ders of magnitude higher or lower than the TIS rate, de-
pending on whether the prefactor of ref. [47] was used with
the free energy barrier from PPTIS or TST-BC simula-
tions. The authors attributed the failure of the TST-BC
method to the importance of the structural component of
the reaction coordinate, which results in a broad distri-
bution of critical cluster sizes and hence forbids the def-
inition of a unique dividing surface between the reactant
and product states in terms of the size of the crystalline
cluster.

Baidakov and collaborators observed a good agreement
between the crystallization rates computed with the MLT
and TIS [194] as well as the MLT and MFPT [134] meth-
ods.

Recently, we have compared the MFPT rate with
the one calculated in TIS simulations [133]. The MFPT
method in the formulation by Wedekind, Strey and
Reguera [129] does not require previous knowledge about
the position of the top of the free energy barrier, but rather
allows to identify this position from the time evolution of
the crystallizing trajectories. Since the formal derivations
of the rate expressions in TIS and MFPT were similar, we
did not expect any significant discrepancies. The resulting
rates differed, however, by a factor of two, which might ap-
pear insignificant in comparison with the orders of magni-

tude variances in the TST-BC values seen previously, but
is remarkable if one considers that the two methods have
a similar theoretical foundation as both of them view the
transition as a steady state diffusion process along an ap-
propriate progress coordinate. As has been done in many
other studies, we used the size n of the largest crystalline
cluster present in the system for this purpose.

To illustratively compare the performance of the two
methods, we define the positive flux, Φn,0, of trajecto-
ries coming from the initial state and leaving the system
through the interface placed at n. In the TIS framework,
Φn,0 is the flux out of the initial phase through the first
TIS interface modified by the probability to propagate
from there to the given cluster size n:

Φn,0 = Φ1,0PA(n|λ1). (105)

This positive flux saturates to the value of the TIS rate
constant defined in eq. (103). Configurations with n ≤
20 = λ0 belong to the initial supercooled liquid state and
the first TIS interface λ1 is placed at n = 30.

In the MFPT framework, the flux can be written as the
inverse of the MFPT at a given crystalline cluster size,

Φn,0 = τ−1(n). (106)

In correspondence with the TIS scheme, the starting point
of the MFPT trajectories is placed at q0 = λ0. In the for-
malism proposed by Wedekind, Strey and Reguera [129],
MFPTs close to the transition region are described by
an error function (eq. (77)), the magnitude of which con-
tributes the reaction rate according to eq. (78). For a
supercooling of about 28%, this approximation perfectly
describes the behavior of the MFPTs, particularly be-
yond the transition region, indicating a clear separation
between the nucleation and growth regimes. Thus, the
MFPT rate constant is given by the value of the plateau
in fig. 11, just as in the case of the TIS calculation.

As can be seen in fig. 11, the flux values obtained with
the two methods coincide only at the first TIS interface,
after which the difference between them slowly grows until
both techniques reach a plateau in the same size regime.
A closer examination of the MFPT trajectories revealed
the non-Markovianity of the dynamics of the system, if
the number of particles in the largest crystalline cluster
is used as reaction coordinate. In Kramers theory [38,39],
a central assumption made in the calculation of the rate
constant is that the dynamics has the Markov property,
i.e., that a system sliding along the free energy barrier is
not affected by its past. We found [133], however, that this
is not the case if the process of crystallization is projected
on a poor reaction coordinate, such as the number of par-
ticles in the largest crystalline cluster. To demonstrate the
appearance of memory effects, we measured not only the
MFPTs at a given state n, but also the times for subse-
quent passages. The mean recurrence time obtained in this
way is defined as half of the time between two passages
through an imaginary interface. This definition takes into
account that, due to the shape of the underlying free en-
ergy landscape, the times to reach a given cluster size from
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Fig. 11. Positive flux, Φn,0, through an imaginary interface,
placed at n, calculated with the TIS (eq. (105)) and MFPT
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Fig. 12. Mean recurrence times for configurations with given
cluster sizes, averaged over ten subsequent passages to improve
statistics. The system needs distinctly more time to return to
a given state in the period of the first ten than in the next ten
crossings. As the number of passages increases, the recurrence
times of every cluster size approach a constant value.

above will differ from those to reach it from below. For a
Markov process, the recurrence time of a state, calculated
in this way, should not depend on whether the system
has previously visited this state or not. This requirement
is, however, not fulfilled for the crystallization transition
as can be seen in fig. 12, where the intervals between suc-
cessive passages through an interface clearly decrease with
the number of crossings. Since Markovianty of the dynam-
ics is assumed in the application of the MFPT approach,
the validity of nucleation rates obtained from a MFPT
analysis is unclear.

In ref. [133], we have shown that the memory effects
decay exponentially, strongly indicating the presence of a
coordinate not taken into account in the analysis. This
phenomenon is most likely due to the structural relax-
ation not captured in the size of the crystalline clusters
used as reaction coordinate, which also affected the TST-
BC reaction rate [53]. Furthermore, we would like to note
that, although the factor of two in the difference between
the MFPT and TIS rate constants might seem insignifi-
cant, particularly with respect to the comparison between
PPTIS and TST-BC, an intentional manipulation of the
importance of the structural component of the reaction
coordinate by introducing small pre-structured seeds re-
sulted in disagreement factors of up to 13 [195]. In the next
section, we address the methods for selecting and evalu-
ating the performance of reaction coordinates, but would
like to emphasize with this example that a good choice of
the method used to compute the reaction rate is equally
important, since, after all, TIS requires only an order pa-
rameter suitable to differentiate between the reactant and
the product states, but provides a solid value for the re-
action rate constant without relying on the Markovianity
of the dynamics projected on this order parameter.

4.11 Transition rates are unique

As noted earlier, transition rates calculated using a par-
ticular collective variable should be independent of this
choice (of course, the accuracy of such a calculation will
strongly depend on the quality of the chosen reaction co-
ordinate). In sect. 3.3, we have seen, using some simple
examples, that free energy landscapes depend on the col-
lective variable on which they are projected. Here, we re-
turn to one of these examples and compare the reaction
rates determined for the same simple system in two dif-
ferent representations. We first consider the position q of
one-dimensional particle that evolves in a bistable poten-
tial of the form V (q) = κ(q2

0 − q2)2 as a reaction coor-
dinate. If the particle is in contact with a heat bath at
low temperature, i.e., kBT is much smaller than the bar-
rier height κ, the particle will be preferentially located
near the potential energy minima at q = ±q0, but once
in a while a transition from one of these long-lived states
to the other will occur. The rate at which such transitions
occur decreases exponentially with increasing barrier sizes
(or, equivalently, with decreasing temperature). A typi-
cal trace q(t) and the resulting probability density are
shown in the top left and middle panels of fig. 13, respec-
tively. The time evolution of the system viewed through
the variable w, obtained by applying the transformation
w = (ψ ◦ φ)(q) to the variable q as described in sect. 3.3
(eqs. (58) and (60)), looks different from the time evolu-
tion of q. Nevertheless, one can clearly discern transitions
between the two wells also in this variable, although nei-
ther the stable states nor the barrier between them are
revealed in the free energy FW (w).

The kinetic rate constants obtained from the analysis
of the time traces of two variables q(t) and w(t) are ex-
actly the same. To see this, just imagine that we place
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Fig. 13. Top left: Time trace of the position q of a particle of mass m evolving at reciprocal temperature β in the bistable
potential V (q) = κ(q2

0 − q2)2 according to the Langevin equation with a friction constant γ. The parameters used in the
simulation were κ = 1, q0 = 1, β = 3, m = 1 and γ = 0.4. The particle spends most of its time in the two potential energy
minima located at q = ±q0, but occasionally transitions between the minima occur. Top middle: Probability density PQ(q) of
q. Bottom left: Time trace of the variable w = (ψ ◦ φ)(q) obtained by transforming the time trace shown in the top left panel.
The transformation was carried out according to eqs. (58) and (60) for k = 1. Bottom middle: probability density PW (w) of
the transformed variable. Top right: Time correlation function C(t) for transitions between the two wells. Bottom right: Time
derivative k(t) = dC(t)/dt.

the dividing surface between the two states somewhere
in the barrier region at q = q∗. So the system is in re-
gion A if q ≤ q∗ and in region B if q > q∗. Equivalently,
one may define the dividing surface by w = w∗ where
w∗ = (ψ ◦ φ)(q∗) and regions A and B by w ≤ w∗ and
w > w∗, respectively. Since the mapping from q to w is
monotonic, the two definitions of regions A and B are com-
pletely equivalent. Accordingly, the same time correlation
function C(t) = 〈hA(0)hB(t)〉/〈hA〉 is obtained from the
time traces q(t) and w(t) and, therefore, also the transition
rate constants are the same in both cases.

Another way to look at this issue is by considering
the reactive flux k(t), i.e., the derivative of the time cor-
relation function, k(t) = dC(t)/dt. The time correlation
function as well as its time derivative are shown in the
right panels of fig. 13. As discussed earlier, the transi-
tion rate constant for transitions from A to B is equal
to the plateau value of k(t) after transient effects due to
correlated recrossing events on the molecular time scale
τmol have decayed. The reactive flux for a dividing surface
placed at q∗ is given by (eq. (90))

kQ(t) =
〈q̇(0)δ[q(0) − q∗]θ[q(t) − q∗]〉

〈θ[q∗ − q(0)]〉 . (107)

Transforming to a new variable w = w(q) and using the
monotonicity of the mapping w(q) one finds

kQ(t) =
〈ẇ(0)

(
∂w
∂q

)−1 (
∂w
∂q

)
δ[w(0) − w∗]θ[w(t) − w∗]〉

〈θ[w∗ − w(0)]〉

=
〈ẇ(0)δ[w(0) − w∗]θ[w(t) − w∗]〉

〈θ[w∗ − w(0)]〉 = kW (t), (108)

because the two Jacobian factors arising from the time
derivative and the transformation properties of the delta

function cancel each other. Thus, the reactive flux ob-
tained from variables q(t) and w(t) is the same, implying
that also the transition rate constants are identical.

5 Analyzing the nucleation mechanism

5.1 Reaction coordinate

While computer simulations yield very detailed informa-
tion on the structure and dynamics of complex systems,
they do not automatically generate understanding. In fact,
vast amounts of data are produced each day by computer
simulations running on high performance computers and
often the challenge no longer is to create data, but to make
sense of them. In the case of crystallization, a collection
of crystallization trajectories, obtained by brute force MD
or by path sampling methods and stored on a computer in
form of long lists of positions and momenta of all particles
at different times, do not yield insights into the transition
mechanism directly. For instance, even deciding whether
the process follows the general picture of nucleation the-
ory and proceeds by a localized formation of a crystalline
embryo that then grows subsequently is not a completely
trivial issue and early simulation studies of crystallization
focused on exactly that [51, 113]. Some progress may be
made by visualizing the crystallization trajectories with a
molecular viewing program, perhaps highlighting regions
of pronounced local crystallinity with different colors, but
only further statistical analysis of these trajectories can
give a reliable description of the mechanism with which
the system goes from the disordered to the ordered state.
Such mechanistic understanding is expressed in terms of
models that capture the essential features of the process
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under study. These models should have a minimal number
of degrees of freedom and are ideally expressed in terms
of physically meaningful variables to render them under-
standable to humans. Classical nucleation theory is an ex-
ample of such a low-dimensional model, in which a single
variable (the size of the crystalline nucleus) is used to de-
scribe the progress of the reaction and some simplifying
assumptions are made on the dynamics of this variable.
Thus, the central goal of the analysis of transition path-
ways is to identify a reaction coordinate, i.e., a physical
variable that captures the relevant physical features of the
process and quantifies the progress of the transition.

The reaction coordinate q(x), usually defined as a func-
tion of the configuration x containing the positions of all
atoms, is a variable that is supposed to provide a mea-
sure for how far the process under study has proceeded. It
should, for instance, tell us whether a particular configu-
ration is a transition state from which both stable states
are equally accessible. In the context of rare event sim-
ulations, it is important to distinguish between reaction
coordinates and order parameters. While from an order pa-
rameter we require only the ability to discriminate among
stable states between which the transition occurs, a re-
action coordinate should tell us how far the reaction has
advanced and what is likely to happen next. To make the
significance of this terminology clearer, consider the crys-
tallization of a supercooled liquid. In this case, one may
use the structure factor S(k) for an appropriate recipro-
cal vector k or a bond order parameter Ql (usually l = 6
for LJ, but the exact choice depends on the lattice type
one intends to detect) averaged over the whole sample to
tell apart a liquid and a crystal with their typical fluctua-
tions. Thus, S(k) and Ql may serve as order parameters,
but they usually do not work well as reaction coordinate
(even if they were used in this role in some earlier stud-
ies [47, 51]). Particularly for strong supercooling, where
the critical nucleus is small, the signal produced in the or-
der parameter by a crystalline embryo that is just a little
beyond the critical size may be so small that it disappears
in the

√
N -fluctuations of the order parameter. Clearly, to

work for a nucleation process, a reaction coordinate can-
not be global, but must be able to detect local variations
of crystallinity. Which collective variable one chooses as
reaction coordinate is arbitrary to some degree. Just as in
the case of free energy landscapes discussed earlier, there
is no such thing as the reaction coordinate. Rather, there
are usually many choices for a reaction coordinate, some
better and some worse.

5.2 Committor

How well a given collective variable works as a reaction co-
ordinate can be assessed by considering the commitment
probability, or committor, pB(x). For a given configura-
tion x, the committor is defined as the probability that
trajectories started from x reach region B before region A.
The committor pA(x) for region A is defined analogously.
Since any trajectory will reach either A or B provided
one waits long enough, pA(x)+pB(x) = 1. The concept of

Fig. 14. The committor pB(x) of a configuration x is the prob-
ability that a trajectory initiated at x reaches state B before
state A. The committor can be estimated numerically by start-
ing a certain number of trajectories from x with random mo-
menta drawn from the appropriate Maxwell-Boltzmann distri-
bution, counting how many of them go to state B and dividing
by the total number of generated trajectories.

committor, first introduced by Onsager as splitting proba-
bility in the analysis of ionic separation [196], is illustrated
schematically in fig. 14. In a simulation, the committor for
a particular configuration x can be computed by initiat-
ing m trajectories from x with random momenta drawn
from a Maxwell-Boltzmann distribution. These trajecto-
ries are terminated when they reach either A or B. From
the number nB of trajectories that reach B the commit-
tor is then estimated, pB ≈ nB/m. (Note that for over-
damped dynamics momenta are irrelevant and the average
is done over noise histories.) The committor is a statistical
measure for how “committed” configuration x is to state
B. Configurations with a committor pB ≈ 1 lead to tra-
jectories most often relaxing to B and therefore can be
viewed as being near B. Analogously, configurations with
pB ≈ 0 most often go to A and can be viewed as being
near A. Configurations with a committor of pB ≈ 1/2,
on the other hand, are equally likely to go either side,
and it is natural to define these configurations as transi-
tion states half way between regions A and B. The defi-
nition of transition states via the committor goes back at
least to Ryter [197,198], and was used by several authors
in the theory of activated stochastic processes [199–201].
The committor, which has also proven very useful in the
analysis of protein folding [202], lies at the heart of tran-
sition path theory, a probabilistic framework to study the
statistical properties of rare event trajectories [203,204].

In the study of crystallization, the committor can be
used as a dynamical criterion for the definition of the criti-
cal nucleus. Already in very early molecular dynamics sim-
ulations of crystallization of a Lennard-Jones fluid, carried
out by Mandell, McTague and Rahman [51,113], this con-
cept was used to determine the approximate time at which
a growing crystalline embryo reached critical size. For this
purpose, the authors of these studies first generated a
molecular dynamics trajectory at very large supercooling
for which crystallization happened spontaneously during
the relatively short simulation time of about 50 reduced
time units. At various configurations taken from this tra-
jectory, new trajectories were initiated with random initial
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momenta for a time long enough to determine whether
the crystallization completes or subsides. In the former
case, the corresponding configuration was considered post-
critical and in the latter pre-critical. A statistically more
meaningful determination of critical nuclei for the crys-
tallization of a Lennard-Jones liquid, with several trajec-
tories started at each configuration, was carried out by
Honeycutt and Andersen [205, 206], who also defined, for
the first time, the nucleus to be critical if the configuration
containing it lead to trajectories with equal probability to
completely crystallize or liquefy.

What we expect from a good reaction coordinate q(x)
is to tell us whether the configuration x is at the beginning
or the end of the reaction or if it is a transition state. So,
by looking at q we should be able to tell whether the re-
action has just started or is almost completed. In a sense,
the committor itself is the ideal reaction coordinate, be-
cause it tells us how far the reaction has proceeded and
what is likely to happen next [207–209]. For instance, a
committor of pB ≈ 1/2 tells us that the corresponding
configuration is a transition state half way between states
A and B. But while the committor serves as a precise
measure of the transition, it usually does not convey a
physically transparent meaning because of its generality.
For instance, imagine we study a crystallization transition
that roughly follows the nucleation mechanism envisaged
by classical nucleation theory, but that we do not know
about this theory. Now, the fact that a particular con-
figuration has a certain committor pB does not immedi-
ately tell us that the transition occurs by nucleation and
growth. To find that out we would have to analyze config-
urations with different committor values and realize that
the configurations contain a crystalline nucleus, whose size
correlates with the committor. Based on this insight, we
could then hypothesize about different contributions to
the free energetics of nucleus formation and finally come
up with a simple model such as classical nucleation theory.
Thus, while the committor is a very useful concept in the
analysis of rare transition pathways, it does by no means
directly lead to physical insight and should be considered
the starting point for further analysis rather than an end
by itself.

One very useful property of the committor is that it
can be used as a criterion to gauge the quality of a re-
action coordinate q. From a good reaction coordinate we
expect that it provides a measure for the progress of the
reaction. As such, one should be able to predict the com-
mittor pB(x) of a particular configuration based solely on
the reaction coordinate q(x) of that configuration. In other
words, a good reaction coordinate should parametrize the
committor, pB(x) = pB [q(x)]. For a bad reaction coordi-
nate, on the other hand, there is no such relation with
the committor and configurations with the same value of
the reaction coordinate may have rather different values
of the committor.

One may ask the question, whether for a perfect re-
action coordinate q(x), i.e., a reaction coordinate that
uniquely determines the committor, the top of the free en-
ergy barrier separating two stable states always coincides
with the isocommittor surface corresponding to pB = 1/2.
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Fig. 15. Asymmetric bistable potential energy V (q) (top) and
corresponding exponential exp[βV (q)] (bottom). Here, qA and
qB denote the boundaries of regions A and B, respectively,
and q∗ is the position of potential energy barrier between
the two stable states. The shaded area indicates the integral
R q

qA
exp[βV (q′)]dq′ appearing in the expression for the commit-

tor (eq. (109)) as discussed in the main text. The committor is
1/2 at the point q1/2, for which the area between qA and q1/2

is equal to that between q1/2 and qB . The dashed line in the
bottom panel line is the committor, which changes from 0 at
qA to 1 at qB .

The answer to this question is no. As a simple example,
consider a particle moving in one dimension on the poten-
tial energy V (q) according to the overdamped Langevin
equation with constant diffusion coefficient D. The po-
tential, shown schematically in fig. 15, is supposed to be
asymmetric with two wells A and B of different width.
The committor pB(q) of a point q in between the two
boundaries qA and qB is the probability (averaged over
noise histories) that the point reaches the right boundary
qB before the left boundary qA. It can be shown that, for
the dynamics considered here, the committor satisfies the
adjoint time-independent Smoluchowski equation and can
be expressed as [196,209]

pB(q) =

∫ q

qA

exp[βV (q′)] dq′∫ qB

qA

exp[βV (q′)] dq′
. (109)

Hence, the committor at q is the area under the curve
exp[βV (q′)] between qA and q, shown as shaded blue re-
gion in fig. 15, normalized by the area between qA and qB .
Accordingly, the committor grows monotonically from 0
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at qA to 1 at qB . The inflection point of the committor
is located at q∗, the position of the barrier. Due to the
asymmetry of the potential, however, the point where the
committor is 1/2, i.e., the point q1/2 for which the area un-
der the curve exp[βV (q′)] between qA and q1/2 is equal to
the area between q1/2 and qB , is at a different position. For
the example shown in fig. 15, basin B is wider than basin
A and therefore q1/2 lies at the right of the barrier top.
Hence, in general, the isocommittor surface for pB = 1/2
differs from the hypersurface corresponding to the top of
the free energy barrier. It is also worth noting that the
committor-1/2 surface is not necessarily the dividing sur-
face that maximizes the transmission coefficient. Note that
the analysis presented above is valid for any definition
of the boundaries qA and qB . In considering rare transi-
tions between two stable states, however, regions A and
B should be chosen to include most typical fluctuations.

5.3 Committor distribution and transition state
ensemble

Since for a good reaction coordinate its value determines
the value of the committor, isosurfaces of the committor
and the reaction coordinate should coincide. More specif-
ically, provided pB(x) = pB [q(x)] holds, the hypersurface
in configuration space defined by q(x) = const is identical
to the hypersurface defined by requiring that the com-
mittor has the value pB(const) [207]. One can easily test
whether this is the case for a particular reaction coordi-
nate q(x). To do that, one samples configurations from
the equilibrium distribution with the constraint that the
reaction coordinate has the particular value q∗. For in-
stance, in the case of crystallization, one would prepare a
set of configurations sampled from the equilibrium distri-
bution using an MC simulation with the additional condi-
tion that the crystalline nucleus has a particular size. For
all configurations generated in this way one then estimates
the committor by shooting off trajectories from the con-
figurations and finally histograms the committor values.
Mathematically, the committor distribution P (pB) result-
ing from this procedure can be written as

P (pB) = 〈δ[pB − pB(x)]〉q(x)=q∗ (110)

where 〈. . .〉q(x)=q∗ denotes an equilibrium average restrict-
ed by the condition q(x) = q∗. If q is a good reaction coor-
dinate, the value of q completely specifies the value of the
committor pB , such that all configurations with q(x) = q∗

yield the same committor. As a consequence, the com-
mittor distribution P (pB) is a delta-like peak located at
pB(q∗). If, on the other hand, the postulated reaction co-
ordinate is not appropriate for the reaction, configurations
with the same q may have very different values of the com-
mittor. In this case, the committor distribution P (pB) is
smeared out. Thus, the width of the committor distribu-
tion can be viewed as a measure of the quality of the
reaction coordinate.

Three possible scenarios resulting in different commit-
tor distributions are illustrated in fig. 16. For the free en-
ergy landscape w(q, q′) shown in panel (a) as a function

Fig. 16. Different two-dimensional free energy landscapes
w(q, q′) as function of the coordinates q and q′ alongside with
the free energy w(q∗, q′) for q fixed at q = q∗ and the corre-
sponding committor function. (a) Here, the coordinate q cor-
rectly describes the transition and there is no barrier in the
orthogonal direction q′. In this case, the committor distribu-
tion is peaked at pB ≈ 1/2. (b) The transition involves the
crossing of a barrier in the direction of q′ as can be seen in the
double well shape of w(q∗, q′). Since configurations with q = q∗

are most likely located near states A and B, the committor has
two peaks, one at 0 and one at 1. (c) The situation is similar
to that shown in panel (b), but here the barrier in q′-direction
is flat and thought to be crossed diffusively. This leads to a flat
committor distribution.

of two variables q and q′, the variable q is a valid reaction
coordinate and during a transition from A to B no barrier
needs to be crossed in the direction of q′. Configurations
sampled with the constraint that q has the value q∗ lie at
the top of the barrier separating A and B and are true
transition states. This is reflected in a committor distri-
bution peaked at pB ≈ 1/2. In the situation depicted in
panel (b), the coordinate q fails to provide a complete de-
scription of the transition and the coordinate q′ plays an
important role too. For q = q∗ there is a barrier in direc-
tion of q′ such that configurations with q = q∗ are most
likely located away from the barrier deep in the basins of
attraction of A or B. As a consequence, the committor dis-
tribution P (pB) has peaks at 0 and 1, respectively. Such
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a bimodal shape of P (pB) is indicative of a poor reaction
coordinate q. In the scenario displayed in panel (c), the
barrier crossing involves diffusion in direction of q′ on a
flat free energy profile w(q∗, q′) leading to a flat commit-
tor distribution. Also in this case, q neglects an important
aspect of the transition and a good reaction coordinate
needs to include q′ too.

Committor distributions were introduced to analyze
kinetic pathways of ionic dissociation [210] and have sub-
sequently also been used to study the mechanism of crys-
tallization [53,117,211]. For the crystallization of LJ par-
ticles [53] and soft spheres [117], this analysis clearly in-
dicates that the size of the crystalline embryo is not suffi-
cient to describe the crystallization mechanism and other
variables play an important role. Furthermore, compar-
ison of configurations with different values of the com-
mittor may help to identify the variables determining the
value of the committor. In particular, it may be helpful to
analyze configurations with committor pB = 1/2 sampled
from transition pathways. Such a collection of transition
states is called the transition state ensemble (TSE). The
transition states are the points where transition trajec-
tories cross the isocommittor surface corresponding to a
committor value of pB ≈ 1/2. Members of the TSE are
not distributed uniformly on the isocommittor-1/2 surface
but are located where transition pathways preferentially
cross this surface. In the case of high friction dynamics,
states belonging to TSE are distributed according to their
equilibrium distribution restricted to the isocommittor-
1/2 surface [207]. In a transition path sampling simula-
tion the transition path ensemble can be determined by
computing the committor on points collected from transi-
tion pathways. Since along a transition path the commit-
tor changes continuously from 0 to 1, there is always at
least one (but usually several) configurations on the path
for which pB ≈ 1/2. For the freezing of LJ particles [53],
an inspection of the TSE revealed that, besides size, also
shape and structure play an important role for the transi-
tion. In particular, critical clusters are either (1) small and
compact with an fcc core and a bcc-structured surface or
(2) large and less packed with a more bcc-like structure.

5.4 Likelihood maximization

As mentioned before, one central goal in the study of
rare event processes, and in particular of crystallization,
is to identify the variables that characterize the transition
and to separate them from irrelevant degrees of freedom
that can be regarded as random noise. In other words,
we would like to find a good reaction coordinate for the
transition. Several statistical approaches have been devel-
oped for this purpose including the Bayesian statistics
approach of Hummer and Best [208, 209], or the artifi-
cial neural network method of Ma and Dinner [212]. Here
we will focus on the likelihood maximization method of
Peters and Trout [171,172,213,214], which is particularly
suitable to be combined with path sampling simulations
and has been used to study the mechanism of crystalliza-
tion [55,56,215,216].

The basic idea of the method of Peters and Trout is to
construct a very general reaction coordinate q(x, α) which
is a function of the configuration x and a set of M free
parameters α = {α1, α2, . . . , αM}. These parameters are
then tuned to maximize the probability to observe a par-
ticular data set. The data set can consist of the outcome
of the trajectories used in committor calculations or of the
sequence of rejections and acceptances in a path sampling
simulation carried out with aimless shooting, a path sam-
pling algorithm specifically designed to work in combina-
tion with likelihood maximization [171]. To be more spe-
cific, consider a set of configurations {x1, x2, . . . , xP }, for
instance selected from pathways connecting stable states
A and B. From each of these configurations one or several
test trajectories are started with random momenta and
followed until they reach either region A or region B. The
information about the outcome of these test trajectories,
i.e., whether they go to A or B, is used to optimize the
parameters of the reaction coordinate. To do that one first
assumes that the committor is a sigmoidal function of the
reaction coordinate,

pB [q(x, α), q∗, η] =
1
2

[1 + tanh([q(x, α) − q∗]η)] , (111)

where q∗ and η are two parameters that need to be opti-
mized in addition to the parameter set α. This model of
the committor reflects the expectation that the committor
grows smoothly from zero to one over a certain range of
the reaction coordinate whose width can be tuned with the
parameter η. In the above equation, q∗ is the value of the
reaction coordinate for which the committor pB = 1/2.
Given this model for the committor, the likelihood to ob-
serve a certain set of outcomes of the test trajectories can
be written as

L(α, q∗, η) =
∏
k(B)

pB [q(xk)]
∏

k′(A)

(1 − pB [q(xk′)]), (112)

where we have exploited the fact that the test trajecto-
ries are statistically independent from each other. In the
above equation, the first product on the right hand side
runs over all trajectories starting from configurations xk

that end in region B and the second product runs over all
trajectories ending up in A. The likelihood L(α, q∗, η) is a
measure for the compatibility of the proposed committor
model with the observed data. Maximizing this likelihood
(or, in practice, its logarithm) with respect to the param-
eters α, q∗ and η then yields the committor model, and
hence the reaction coordinate q(x, α), that best explains
the outcomes of the test trajectories.

The ability of the maximum likelihood procedure
sketched out above to yield a valid prediction of the com-
mittor depends on how the model reaction coordinate q(x)
is constructed. One possibility to do that is to define a
number of collective coordinates qi(x), for which one sus-
pects that they might play a role in the description of the
mechanism of the transition under study, and to combine
them linearly,

q(x, α) =
M∑
i

αiqi(x). (113)
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One can also define more general forms of the reaction
coordinate, for instance by including also products of the
collective variables, thereby increasing the number of free
parameters. A further improvement consists in defining
the reaction coordinate by a string in the space of col-
lective variables [216, 217]. In this approach, the reaction
coordinate is constructed by projecting configurations on
a piece-wise linear string defined by a set of points in col-
lective variable space. Through this non-linear mapping
the reaction coordinate is very flexible, such that it is bet-
ter able to capture complex reaction mechanism.

Likelihood maximization has been applied to identify
mechanistic details of several rare transitions including
nucleation in the Ising model [171], structural solid-solid
transitions of terephtalic acid [218] and the folding of
a polymer chain with short-range attractions [215]. The
method has also been used to study crystallization [55,56].
In particular, Beckham and Peters employed likelihood
maximization to identify a scalar reaction coordinate for
the freezing of a Lennard-Jones liquid [55]. By analyz-
ing trajectories sampled with aimless shooting and testing
several structural and geometric candidate reaction coor-
dinates, they established that the product nQcl

6 of the size
n of the critical cluster and its structure as determined by
the order parameter Qcl

6 evaluated for the cluster provides
the best description of the nucleation process. Thus, both
information about the size of the crystalline embryo as
well as its degree of crystallinity need to be included in the
definition of the reaction coordinate. The validity of the
obtained reaction coordinate was confirmed by inspecting
committor distributions. Interestingly, global structural
indicators calculated for the entire system rather than only
for the crystalline cluster proved to be very poor reaction
coordinates.

As explained previously in sect. 3.2, local crystallinity
is usually probed with the help of Steinhardt bond order
parameters [47, 111]. Based on this order parameter one
can decide, whether a particular particle sits in a crys-
talline or in a liquid environment. By performing a cluster
analysis of neighboring crystalline particles, one can group
the crystalline particles into connected clusters, several of
which may exist in the system at a given time. The size of
the largest of these crystalline clusters is then often used
as reaction coordinate for the crystallization. The pro-
cedure to identify the largest crystalline cluster depends
on several parameters. For the most popular definition
of crystallinity [47], these parameters are the thresholds
for the nearest neighbor distance, the strength of crys-
talline bonds, and the number of crystalline connections,
{dth, sth, nth}. These parameters are chosen according to
some physical but nevertheless rather arbitrary criteria.

An alternative way to choose the parameters enter-
ing the definition of local crystallinity is by likelihood
maximization [56]. To do that, one considers the size
n(x, α) of the largest crystalline cluster in a configura-
tion x as reaction coordinate for crystallization. Here,
α = {dth, sth, nth} denotes the set of parameters used on
the definition of the crystallinity as specified explicitly in
sect. 3.2. One then looks at the specific values of the pa-
rameters α for which the size of the largest crystalline clus-

ter performs best as reaction coordinate. In other words,
one searches for the parameter values that maximize the
likelihood function of eq. (112) for a set of test trajectories
generated for the crystallization under study. Application
of this optimization procedure to the freezing of a mod-
erately supercooled Lennard-Jones liquid [56] indicated
that the optimum parameter set found by likelihood maxi-
mization differs considerably from the parameters that are
commonly used [47,55]. While the quality of the reaction
coordinate is less sensitive to the next-neighbor distance,
the thresholds for the number and strength of the crys-
talline connections should be chosen carefully. In partic-
ular, the quality of the largest cluster size as a reaction
coordinate can be improved with respect to the standard
definition by applying a stricter criterion in the definition
of the crystalline bonds. However, as shown by analyzing
committor distributions, even with the optimal definition
the size of the largest crystalline cluster does not com-
pletely capture the crystallization mechanism [56]. Hence,
to obtain a good reaction coordinate for crystallization,
other variables must be included too as suggested ear-
lier [117,124].

6 Applications

6.1 Hard sphere freezing

According to van der Waals theory, particles with a hard
repulsive core and long-range attractive interactions dis-
play a first-order phase transition between a low density
gas and a high density liquid. For purely repulsive hard
sphere systems, however, a different question arises. It is
clear that at low densities hard spheres exist as a disor-
dered gas. At high densities near close packing, on the
other hand, hard spheres must be arranged on a regu-
lar lattice such as the face-centered cubic or the hexago-
nal close-packed (hcp) lattices. Does this transition from
a low density gas to a high density solid occur contin-
uously of discontinuously? Or, in other words, is there
a hard-sphere freezing transition to a crystalline solid
with long-range order as first predicted by Kirkwood in
1951 [219]? In the mid-1950s this was an important open
question, but no theoretical tools were available to derive
the properties of phase transitions from statistical me-
chanical principles [220]. For instance, the virial expan-
sion pioneered by Boltzmann does not give any indica-
tion about the existence of such a transition. So it was no
surprise that at a symposium on “The Many-Body Prob-
lem” held 1957 at the Stevens Institute of Technology in
Hoboken, New Jersey, during a round table discussion lead
by G. E. Uhlenbeck on general topics of statistical me-
chanics a vote among prominent scientists (including sev-
eral Nobel laureates) about this question was taken and
it ended even [221]. The hesitation of half of the audience
is understandable as it is indeed surprising that purely re-
pulsive particles can form a stable crystal. The question
was finally settled in favor of the existence of a first-order
fluid-solid transition on the basis of now famous molecular
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dynamics simulations by Alder and Wainwright [222] and
of Monte Carlo simulations by Wood and Jacobson [223].

These simulations, as well as later ones by Hoover
and Ree [224], in which the entropy of both phases was
computed, showed that for packing fractions in the range
φ = 0.49–0.55 (the packing fraction φ is the fraction of
volume occupied by the hard spheres), a disordered fluid
phase with packing fraction φ = 0.49 coexists with an or-
dered solid phase with packing fraction φ = 0.55. While
for packing fractions below φ = 0.49 the fluid is the more
stable form, at densities between φ = 0.55 and close pack-
ing occurring at φ = π/18 ≈ 0.74 the hard sphere system
exists as a solid. Both the solid and the fluid branch of
the equation of state can be extended into the respective
metastable region, indicating that the hard sphere freezing
transition is indeed of first order.

An interesting aspect of the hard sphere freezing tran-
sition is that it is purely entropic. To see what that means
we need to consider the thermodynamics of the liquid-solid
transition. We know that according to the Second Law of
Thermodynamics a system with given volume V and tem-
perature T exists in a state for which the Helmholtz free
energy

F = U − TS (114)

is at a minimum. In other words, the thermodynami-
cally stable phase is that one with the lower Helmholtz
free energy. Other phases with higher free energy may be
metastable but they tend to transform into the more sta-
ble phase provided that is kinetically possible. As stated
in the famous inscription engraved on Boltzmann’s tomb
in Vienna’s central cemetery,

S = k log W, (115)

the entropy S is proportional to the logarithm of the
number of microstates W accessible to the system. (In-
cidentally, this equation, expressed by Boltzmann only
in words, was explicitly written down later by Planck.)
Boltzmann’s expression for the entropy is the link between
statistical mechanics and thermodynamics and it provides
a precise prescription on how to calculate the entropy for
a given microscopic model. The general intuition now is
that for an ordered system a smaller number of states is
accessible than for a disordered system and, hence, the
entropy of the ordered system should be lower than that
of the unordered one. Together with the expression of the
Helmholtz free energy (see eq. (114)), this suggests that
for any particular substance the transition from the dis-
ordered liquid to the ordered solid can occur only if the
lower entropy of the ordered crystal is compensated by a
sufficiently large loss in energy.

This scenario indeed describes some transitions, but
in many cases this rather naive reasoning based on as-
sociating low/high entropy with apparent order/disorder
is inaccurate, and it is entropy that drives the transition
rather than energy. This is particularly evident for the
hard sphere freezing transition. Since in the hard sphere
system particles do not overlap due to the infinitely high
interaction energy at contact, the total potential energy of
the system vanishes for all possible configurations. Hence,

the internal energy U is just the kinetic energy and, as
in the ideal gas, is a function of temperature only. Thus,
along an isotherm, the only change in free energy is due
to the changing entropy which can be determined with
high accuracy from computer simulations (since the en-
tropy is a measure for the available phase space volume
and cannot be written as an ensemble average of a dy-
namical variable, advanced simulation techniques such as
thermodynamic integration have to be used). While for
packing fractions below φ = 0.49 the fluid has the higher
entropy, for packing fractions above φ = 0.55 the solid
is entropically favored and, hence, the thermodynamically
stable phase. For intermediate packing fractions, the lower
density fluid coexists with the higher density solid. The re-
sult that the solid, which we usually perceive as “ordered”,
has a higher entropy than the disordered liquid is slightly
counter-intuitive and it demonstrates that one should be
careful in relating high entropy with disorder (of course,
if one defines disorder via the number of accessible states,
no inconsistencies appear). In the case of the hard sphere
system at high densities, the solid is the thermodynami-
cally stable phase, because in the regular crystalline struc-
ture more configuration space is available. It has become
clear recently that other transitions also have very impor-
tant entropic components including the isotropic-nematic
transition of liquid crystals, the phase separation of bi-
nary mixtures, protein crystallization and entropic forces
in general [225,226].

While the early works of Alder and Wainwright and
of Wood and Jacobsen, as well as computer simulations
performed later, unequivocally confirmed the existence of
the hard sphere freezing transition, another related and
seemingly simpler question proved much more persistent,
namely that about the structure of the hard sphere solid.
It took about forty more years to figure this out on the
basis of computer simulations. At high densities, the hard
sphere solid is expected to exist in a structure that sup-
ports close packing such as the face-centered cubic or
hexagonal close-packed structures, which differ in the par-
ticular way hexagonal close-packed layers of spheres are
stacked on top of each other. The question now is: is the
fcc or the hcp structure the more stable phase? Or, in
other words, which one of the phases has the higher en-
tropy? (Since in the hard sphere system all possible con-
figurations have the same potential energy, the highest
entropy corresponds to the lowest free energy.) While in
both phases the first neighbor shell of each particle is
identical, the fcc and hcp structures differ in their sec-
ond neighbor shell and beyond. It is this difference that
causes the entropy of the two phases to be different. Early
analytic calculations based on a series expansion indi-
cated that the hcp structure has a higher entropy than
the fcc structure [227]. Computer simulations carried out
in the 1960s, ’70s and ’80s gave inconclusive result which
only demonstrated that the entropy difference per par-
ticle, if any, is very small compared to kB. Using the
Frenkel-Ladd method to obtain the absolute free energy
of a hard sphere system via thermodynamic integration
from the Einstein crystal, a reference system with parti-
cles attached to lattice sites with harmonic springs, and
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sophisticated multicanonical sampling techniques it was
finally shown in the late 1990s that the fcc structure has
the highest entropy [228, 229]. The free energy difference
between fcc and hcp, which slightly increases as the den-
sity is raised from melting to close packing, has a value of
about 10−3kBT with error bars of the order of 10−4kBT .
The fcc structure has also a higher entropy than all other,
random and periodic, stacking sequences [230].

More recently, computer simulations of hard sphere
systems concentrated on the nucleation of the stable solid
phase from the metastable fluid generated by a sudden
compression. Contrary to the assumptions of classical nu-
cleation theory, these computer simulations showed that
already for packing fractions 0.42 < φ < 0.49, well be-
low the freezing transition of a hard sphere fluid, a struc-
tural precursor to the development of long-range order
exists [231]. It manifests itself as a shoulder in the second
peak of the radial distribution function and is a conse-
quence of crystalline domains commensurate with those
in the crystal at the melting point (φ = 0.55). Similar fea-
tures have been experimentally observed for several sim-
ple liquids and traced back to the enhancement of local
crystalline ordering in further simulations [126, 232] and
analytically [233].

Although well studied, the behavior of the hard sphere
systems still bears some mysteries. Due to advances in ex-
perimental techniques such as confocal microscopy [114],
colloidal systems with hard repulsive interactions can now
be studied particle by particle and enable a direct com-
parison between experimental and simulation data. The
critical size of the crystallizing droplet, the interfacial ten-
sion, as well as the shape and structure of the crystalline
domains obtained in simulations and experiments were
indeed very similar. The experimental nucleation rates,
however, agree with the values measured in simulations
only in the upper part of the coexistence region. The de-
viation increases with the decreasing volume fraction and
amounts up to orders of magnitude. Currently, no con-
clusive explanation has been given for this observation,
although several reasons have been proposed since Auer
and Frenkel [234, 235] first measured the nucleation rates
in simulations. The list of possible issues includes poly-
dispersity of the experimental particles [234], which actu-
ally decreases the nucleation rates, gravitation effects [123]
and hydrodynamic interactions [236], both enhancing nu-
cleation, as well as initial structural inhomogeneity of the
supercooled fluid [237]. The validity of these arguments
and some further explanations are discussed in the recent
review by Palberg [238], which also includes a compre-
hensive record of nucleation rates determined in various
experiments and simulations.

Furthermore, the existence and nature of the glass
transition in a supercooled (monodisperse) hard sphere
fluid is still under discussion. Since the relaxation times
at high density become quite long, early simulations were
inconclusive about whether the absence of the crystalline
phase is an indication of the occurrence of the glass tran-
sition or just an artifact of the simulation time scales and
finite sizes [239–241]. Later, the seminal experiment by
Pusey and van Megen [242] localized the glassy state at

φ > 0.58, although there were spurious occurrences of the
crystalline phase at the walls of the container and at the
meniscus. Some crystalline domains were found even in the
bulk, but the overall glassy behavior of the system was in
line with mode coupling theory [243,244]. In contrast, an-
other experiment performed under microgravity revealed
that evidently glassy samples crystallized rather rapidly,
indicating that the nucleation of crystals may be hindered
by gravity effects [245]. Similarly, an increase of the system
size considered in computer simulations led to a decrease
of crystallization times, which became shorter than the
times needed to equilibrate the system in a metastable
glassy state [246]. On the other hand, a few recent investi-
gations agree that the polydispersity of the experimental
samples provides a very realistic explanation for the exper-
imental evidence of a hard sphere glass, since even a very
small degree of polydispersity decreases the crystalliza-
tion rates by a considerable amount [234,247–250]. There
are, however, indications that the occurrence of the glassy
state is correlated with the initial conditions [251–253]
and possibly with the presence of local crystalline precur-
sors [254]. To our knowledge, there is still no general agree-
ment on the existence of the glassy state or the conditions
for its occurrence in a monodisperse hard sphere fluid. It
is however clear that, in computer simulations, the relax-
ation times strongly depend on the preparation conditions,
which allows to construct an artificial protocol that pro-
duces a glassy state of a monodisperse supercooled hard
sphere fluid by enhancing microstates prohibiting crystal-
lization during cooling. The subsequent crystallization of
such a state turns out to be rather fascinating and intri-
cate [252, 253, 255] due to the nontrivial correlation be-
tween dynamic heterogeneities and crystallizing domains.
Investigations of hard sphere glasses are, however, by no
means concluded and the freezing of hard spheres is still
not completely understood.

6.2 Water freezing

The freezing of water and the formation of ice crystals
in wet air are of great current interest due to the sig-
nificance of atmospheric ice particles for the climate on
earth [256,257]. Due to this importance, the crystallization
of water has been studied in greater detail than that of any
other substance [36]. Here, we therefore do not attempt to
give an overview of this field, but rather concentrate on
computer simulation studies of homogeneous crystal nu-
cleation occurring in supercooled water. In particular, we
will focus on the formation of ice Ih, the hexagonal ice
polymorph that forms at atmospheric pressure. From ex-
perimental studies of freezing [7, 8, 258] it is known that
neat liquid water can be deeply supercooled down to tem-
peratures as low as 227K, corresponding to 46 degrees
below freezing. Note, however, that homogeneous freez-
ing rates for water are known experimentally only in the
range from 235 to 242K. For temperatures below 235K,
which is known as the homogeneous nucleation temper-
ature, nucleation is too fast to be resolved experimen-
tally. Above 242K, on the other hand, nucleation is so
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slow that it does not occur on the time scale of available
experiments. While experiments can give information on
nucleation rates and their dependence on external con-
ditions, they cannot resolve the atomistic mechanism of
crystallization happening at very short length and time
scales. Such information can only be obtained from com-
puter simulations of freezing process. In the case of ice
forming in water, such simulations are difficult because
of the complications related to the development of accu-
rate water models. For instance, the available empirical
water models yield melting temperatures that range from
146K to 274K and the best agreement is obtained for the
TIP4P/ice model [259]. But while obtaining quantitative
reproduction of experimental data for phase diagrams and
nucleation rates is rarely achieved due to the inaccuracies
of the underlying models, useful microscopic insights can
still be gained from computer simulations.

At very low temperatures, the nucleation barrier is
low and the crystallization of supercooled water can be
studied with straightforward MD simulations. By running
simulations of 512 TIP4P water molecules for hundreds of
nanoseconds at a temperature of 230K and a slightly re-
duced density of 0.96 g/cm3 (corresponding to a pressure
of about −1000 bar), Ohmine and collaborators observed
several spontaneous crystallization events in which hexag-
onal ice, ice Ih, formed [260]. Spontaneous crystallization
was also observed in MD simulations [261] of the mW
model [262], in which each water molecule is represented
as a single particle with short range anisotropic interac-
tions designed to reproduce the properties of hydrogen
bonds. These simulations [261] indicate that mW water
has a maximum crystallization rate at a temperature of
202K (an analogous analysis carried out on the basis of
classical nucleation theory for experimental data yields
a maximum crystallization rate at 225K). For tempera-
tures that are higher, nucleation of a crystallite becomes
rarer because the nucleation barrier grows, while at lower
temperatures crystallization is slowed down because the
supercooled liquid becomes increasingly glassy such that
it cannot be equilibrated any more. Critical nuclei, deter-
mined using the MFPT method, were found to be between
90 and 120 molecules large in the temperature regime from
205–208K. The critical nuclei have a broad shape distri-
bution suggesting that the free energy of the solid-liquid
interface is low at these conditions. Interestingly, nucle-
ation occurred predominantly where large patches of four-
coordinated water molecules formed spontaneously in the
liquid [260,261].

In less strongly supercooled water the formation of a
critical crystalline nucleus becomes so rare that the crys-
tallization process cannot be studied any more with brute
force MD simulations. Thus, Galli and collaborators sim-
ulated the crystallization of mW water in the temperature
range from 220 to 240K using forward flux sampling [263].
In these simulations, the Steinhardt bond order parame-
ter q6 was used to detect crystalline molecules and specify
the size of the crystalline nucleus necessary for the defi-
nition of the interfaces for the FFS simulations. The esti-
mated nucleation rates showed a very strong temperature
dependence ranging from 2.1 × 1025 m−3 s−1 at 220K to

1.7 × 10−7 m−3 s−1 at 240K. In contrast, umbrella sam-
pling simulations carried out by Reinhardt and Doye [264]
resulted in nucleation rates that were up to 5 orders of
magnitude higher than those of Galli and collaborators,
pointing to the difficulties in calculating accurate nucle-
ation rates for crystallization. In nanoscopic droplets of
supercooled water, crystallization rates can be lower than
in the bulk by several orders of magnitude due to the
Laplace pressure in the nanodroplet [265].

In computational studies of crystallization it is an
important task to accurately identify and classify local
molecular structures. In particular, for a mechanistic anal-
ysis of the crystallization process and for simulations with
a controlled bias (such as umbrella sampling or metady-
namics simulations) it is crucial to be able to distinguish
the various crystalline structures that may form. While
various methods based on Steinhardt bond order param-
eters have been successfully applied to a variety of prob-
lems, they often yield unreliable results particularly for
complex open structures and in the presence of elastic de-
formations and thermal fluctuations. For instance, it is
notoriously difficult to distinguish local configurations of
liquid water and of the various forms of crystalline and
amorphous ice [266]. As discussed by Brukhno and col-
laborators [267], standard Steinhardt bond order param-
eters are ineffective in detecting hexagonal and cubic ice
because oxygen atoms with different tetrahedral hydrogen
bonding patterns occur. Recently, it was suggested to view
the assignment of local structures as a pattern recognition
problem that can be addressed with machine learning al-
gorithms [12]. It has been shown that an appropriately
trained neural network can be used to accurately detect
local ordered structures and distinguishing the phases of
ice in a broad range of conditions. Another approach to
distinguish cubic and hexagonal structures has been dis-
cussed in ref. [269] for tetrahedrally coordinated patchy
particles.

An alternative approach to determine homogeneous
nucleation rates for water and study the properties of crit-
ical nuclei is the so-called “seeding” method [44,268,270].
In this method, a solid cluster is inserted into the super-
cooled liquid and briefly equilibrated. Then, several MD
runs starting from this equilibrated configuration are car-
ried out to determine the temperature at which the cluster
neither grows nor shrinks. At this particular temperature
the inserted crystalline cluster is the critical cluster. As-
suming that CNT is valid and knowing the difference in
chemical potential between the solid and the liquid phases,
one can then determine the interfacial free energy at the
given thermodynamic conditions. Furthermore, comple-
menting this information with the diffusion coefficient for
the cluster size evaluated at the critical size, one can deter-
mine the homogeneous nucleation rate. The advantage of
the seeding method is that it allows to calculate nucleation
rates at moderate undercooling, where the computational
cost of other methods is prohibitive due to the large size of
the critical cluster. The drawback is that the method relies
on the validity of CNT and on the assumption that the
initial seed indeed corresponds to the crystalline embryo
that would form during the spontaneous crystallization
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process. Using the seeding method, Valeriani and collab-
orators [270] have studied the temperature dependence
of the size of the critical cluster, finding that it varies
from ≈ 8000 molecules at 15K below melting to ≈ 600
molecules at 35K below melting. The free energy barriers
range from about 500 kBT for the largest critical clusters
to about 80 kBT for the smallest ones. Simulations carried
out for several different water models indicate that the nu-
cleation rate varies by 180 orders of magnitude between
35K and 15K below melting. For the TIP4P/2005 model
(and to a slightly lesser degree also for the TIP4P/ice
model) the computed nucleation rates are consistent with
those of real water as known from experiments [7].

An interesting question is whether the formation of
hexagonal ice Ih proceeds directly or via the formation of
cubic ice Ic first. Quigley and Rodger [271] have studied
the free energetics of crystallization of TIP4P water by
means of metadynamics and have found that at a temper-
ature of 180K (TIP4P ice has a melting point of 232K)
cubic rather than hexagonal ice forms preferentially. How-
ever, no such preference was observed by Radakrishnan
and Trout [266] for the same model at the same tempera-
ture using umbrella sampling MC simulations. Later sim-
ulations carried out for the TIP4P/ice model [12] found
that cubic structures form only transiently at the surface
of hexagonal crystallites, indicating that the occurrence
of cubic ice might have to do with the particular collec-
tive variable used to drive the transition. Recent forward-
flux sampling simulations carried out with the same model
found transition states that are rich in cubic ice [272].
Long MD simulations carried out at 180K for mW wa-
ter [273] yielded crystalline embryos consisting of a mix-
ture of cubic and hexagonal regions. The critical nuclei
identified in these simulations for these extreme conditions
in the middle of water’s so-called no-man’s land consist of
less then ten water molecules. A similar mixture of cubic
and hexagonal ice was also found in the crystalline nuclei
forming in FFS simulations of the mW model [263].

7 Summary and outlook

In this article, we have sought to give an overview on
computational methods to study self-assembly by nucle-
ation and growth. For simplicity, we concentrated on ho-
mogeneous nucleation omitting a discussion of heteroge-
neous nucleation which occurs on surfaces and near im-
purities. We would like to stress, however, that the tech-
niques discussed here can be applied equally well to het-
erogeneous nucleation, which is the main pathway to crys-
tallization in nature and technology. As we have focused
on the methodology employed in computer simulations of
phase transformations, we have included only few illustra-
tive examples. Of course, many more computational stud-
ies of crystallization have been carried out shedding light
on the freezing transition in a wide variety of substances
including salts [120], hard polyhedra [274], small organic
molecules [109,275] and proteins [2,35] to name but a few.

Although computer simulations have contributed sig-
nificantly to our understanding of freezing mechanisms,

much work remains to be done. For instance, recent ex-
periments and simulations indicate that many crystalliza-
tion processes from solution follow a non-classical nucle-
ation pathway involving the formation of metastable pre-
nucleation clusters [19,20,36,276], which are liquid or solid
precursors forming on the way to the final crystal. While
the computer simulation methods presented here permit
the efficient sampling of crystallization pathways and the
calculation of nucleation rates, an accurate identification
of the reaction coordinate is still difficult and a perfect
reaction coordinate has not been found even for simple
systems such as a supercooled Lennard-Jones fluid. It is
clear that the size of the crystalline cluster and also its
shape play an important role for the crystallization mech-
anism and need to be taken into account by describing a
freezing transition. However, committor analysis, for in-
stance carried out for the freezing of Lennard-Jones parti-
cles, indicates that additional but so far unknown degrees
of freedom also contribute to the reaction coordinate. In
the future, application of modern machine learning meth-
ods may lead to progress in this challenging problem.
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