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Abstract. With the recent advances in radioactive ion beam technology, Coulomb excitation at safe energies
becomes an important experimental tool in nuclear-structure physics. The usefulness of the technique to
extract key information on the electromagnetic properties of nuclei has been demonstrated since the 1960s
with stable beam and target combinations. New challenges present themselves when studying exotic nuclei
with this technique, including dealing with low statistics or number of data points, absolute and relative
normalisation of the measured cross-sections and a lack of complementary experimental data, such as
excited-state lifetimes and branching ratios. This paper addresses some of these common issues and presents
analysis techniques to extract transition strengths and quadrupole moments utilising the least-squares fit

code, GOSIA.

1 Introduction

Recent advances in radioactive ion beam (RIB) technol-
ogy, in particular the increasing range of species and post-
acceleration energies available from ISOL facilities such as
REX-ISOLDE at CERN, SPIRAL at GANIL and ISAC
at TRIUMF, has led to a resurgence of the use of nuclear
reactions to study the structure of nuclei [1]. Specifically,
Coulomb excitation at safe energies with RIBs is now giv-
ing us a wide range of information on the electromagnetic
properties of exotic nuclei, leading to the knowledge of the
nuclear shape or, more precisely, nuclear charge distribu-
tion [2].

“Safe” Coulomb excitation is defined as the process
of inelastic scattering of nuclei via the electromagnetic
force such that the energy in the centre-of-mass frame
ensures a negligible contribution to the reaction process
from the strong force. This is fulfilled by maintaining a
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minimum distance of 5fm between the nuclear surfaces,
often called Cline’s “safe energy” criterion [3]. Exploiting
the well-understood electromagnetic interaction allows a
nuclear-model-independent interpretation of the observed
data. With the use of light-ions as probes, the excita-
tion modes are often limited to single transitions from
the ground state. This data can be interpreted in terms
of a semi-classical description using first-order perturba-
tion theory. However, the use of high-Z probes has meant
that multiple-step excitation is now common, and a large
number of states can be accessed from ground or isomeric
states. The technique of data analysis based on coupled-
channel calculations with the GoSIA code [4, 5] has al-
lowed for the determination of large, and in some cases
complete, sets of low-lying £2 and E3 matrix elements
in multi-step Coulomb-excitation experiments, including
diagonal matrix elements related to the static electromag-
netic moments. Due to this completeness of measurement,
low-energy Coulomb excitation with heavy ions (or high-Z
targets) is an extremely sensitive probe of collective nu-
clear structure. Used in conjunction with complementary
spectroscopic data, such as excited-state lifetimes, y-ray
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and conversion electron branching ratios, multipole mix-
ing ratios, electric and magnetic moments, mean-square
charge radii etc., a pure experimental understanding of
low-lying collective modes and shapes can be achieved.

When studying exotic nuclei with this technique how-
ever, new challenges emerge. These include dealing with
low statistics and a lack of complementary experimental
data such as excited-state lifetimes and branching ratios.
For many short-lived nuclei, especially on the neutron-rich
side, precise information on the lifetimes of excited states
is not known and thus another solution for the normali-
sation of the measured Coulomb-excitation cross-sections
needs to be applied. In general two options are possible:
either normalisation to the excitation of target nuclei with
known electromagnetic matrix elements or to the number
of elastically scattered beam particles.

This paper attempts to address some of the common
problems and solutions encountered with the extraction
of electromagnetic matrix elements from RIB Coulomb-
excitation experiments in general, with examples taken
from studies performed at REX-ISOLDE and GANIL.
Here, the GOSIA code (see sect. 2) is most commonly used
for this purpose. Firstly though, the observables from such
experiments must be clearly defined; this is done in sect. 3.
Methods utilising the GOsIA code for the analysis are pre-
sented in sect. 4 and a summary and outlook is given in
sect. 5.

2 The GoSIA code

Experiments performed in the 1950s utilising light-ion
beams as a means of exciting target nuclei were relatively
simple to interpret using first- and second-order perturba-
tion theory. Later, heavy-ion beam experiments populated
many excited states via multiple-step Coulomb excitation.
Early versions of computer codes designed to handle the
analysis of these data, most notably that of Winther and
de Boer [6], employed the semi-classical theory of multiple
Coulomb excitation developed by Alder and Winther [7].
This code allowed quantitative calculations of excitation
amplitudes for the first time, using a set of reduced elec-
tromagnetic matrix elements as input. With this philoso-
phy, the cosIA code [4,5] was designed in 1980 to achieve
an extraction of the electromagnetic matrix elements from
a set of Coulomb-excitation data by performing a fitting
routine using these matrix elements as parameters. Both
excitation and the consequent ~y-ray de-excitation, gov-
erned by the very same set of matrix elements, are calcu-
lated within the code, allowing for a direct comparison to
experimental data. The description of y-ray de-excitation
in GOSIA is based on the CEGRY code [5,8] and takes into
account the angular correlations, deeorientation effect, re-
coil effects, Jacobian to a common reference frame, and
integration over detector geometry.

The first successful application of GOSIA was to prove
that the set of matrix elements obtained for °Pd [9]
constituted a unique solution, which has been later con-
firmed by the results of a recoil-distance lifetime mea-
surement [10]. The c¢osIA code was further validated and
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tested in the analysis of an extensive data set for several
W-0s-Pt isotopes [11-14]. In the following years, it was
used to study shape evolution and coexistence in many
regions of the nuclear chart, including transitional nu-
clei [15-17], rare earths [18] and actinides [19], as well
as exotic octupole shapes [20].

3 Observables in Coulomb-excitation
experiments

The direct observables in Coulomb-excitation experiments
are usually the v-ray intensities corresponding to the scat-
tering of the projectile particle defined by the observation
of at least one of the collision partners in a given angu-
lar and energy range. In contrast, the deduced matrix el-
ements are not direct observables and usually occur as
strongly correlated parameters in a fit of the y-ray inten-
sity data. In order to relate these gamma-ray intensities to
the excitation cross-sections of the populated states, which
can be calculated for a given set of scattering and nuclear
parameters, normalisation factors need to be introduced
as described in sect. 4.

Data sets introduced to GOSIA are most often described
in terms of “experiments”. These may be defined by dif-
ferent combinations of beam and target, beam energy and
scattering angle range. With the use of segmented parti-
cle detectors, such as the Double-Sided Silicon Strip De-
tectors (DSSSD) or Parallel Plate Avalanche Counters
(PPAC), subdivision of the data can be made in terms
of scattering angle, gaining sensitivity to second-order ef-
fects such as the spectroscopic quadrupole moment, Q.
This is demonstrated in fig. 1 where the reorientation ef-
fect [21,22] leads to an increasing deviation in the cross-
section at large scattering angles for the assumption of dif-
ferent quadrupole moments. This can be further increased
by the use of different targets to disentangle contributions
from single- and multiple-step excitation processes.

It should be noted that in contrast to other spectro-
scopic methods Coulomb excitation is not only sensitive
to magnitudes of the electromagnetic matrix elements,
but also to their relative signs having a direct influence
on excitation probabilities. As an example one can con-
sider a state A that can be populated in one-step E2
excitation from the ground state or in a two-step E2
excitation process via an intermediate state B, as de-
picted in fig. 2(a). For each of the two possible excita-
tion paths the contribution to the total excitation am-
plitude is proportional to the relevant matrix elements:
(A||E2||g.s.) for the direct excitation and the product
of (A||E2||B) and (B|E2|g.s.) for the two-step process.
The excitation probability is proportional to the square
of the sum of excitation amplitudes and therefore it con-
tains not only quadratic terms ((A|E2[/g.s.)?, related to
B(E2; A — g.s.), and (A| E2||B)*(B||E2||g.s.)?) but also
interference terms between possible excitation paths, such
as (A||E2||g.s.){A||E2||B)(B]E2||g.s.). The signs of these
interference terms depend on the relative signs of the ma-
trix elements. This is illustrated by the example of ''°Ru
(level scheme shown in fig. 2(b)) on 2°®Pb presented in
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Fig. 1. Coulomb-excitation probabilities (dashed lines) and
cross-sections (solid lines; product of the Rutherford cross-
section and Coulomb-excitation probability) for populating
the 2] state in '®*Hg incident on a '**Sn at 2.8 MeV/u un-
der the different assumptions for the spectroscopic quadrupole
moment, Q. The oblate (black) assumption is that of
Qs = 1.15 eb, extracted from the measured B(E2;2] —
07) [23,24] and the rigid rotor model (K = 0), while the pro-
late assumption (red) has the same magnitude, but a negative
sign for Qs. The spherical assumption (Qs = 0) is shown in
blue.
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Fig. 2. (a) Schematic level scheme showing the various ex-
citation paths that lead to sensitivity to the relative signs of
matrix elements, see text for details. (b) Low-lying states in
H1ORuy included in the calculations shown in fig. 3.

fig. 3 where for large scattering angles the population
of the 2; state depends very strongly on the sign of

(2] ||E2]|25) with respect to those of (2][E2/0{) and

(24 ||E2]|07 ). This effect can be strong enough to be visi-
ble even in low-statistics RIB measurements and thus for
several exotic nuclei complete sets of matrix elements in-
cluding their relative signs have been determined [24-27].

4 Coulomb-excitation data analysis
4.1 Normalisation of measured cross-sections

In order to extract nuclear-structure parameters (matrix
elements) from Coulomb-excitation data, the measured -
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Fig. 3. Relative population of excited states in *'°Ru Coulomb
excited on 2°°Pb at 430 MeV beam energy, calculated for two
different signs of (2] ||F2||24): negative (solid lines) and posi-
tive (dotted lines), while all other matrix elements remain the
same. The 0] ground state is not shown, but dominates the
remainder of the population at all angles.

ray intensities have to be converted to absolute excitation
cross-sections. Possible complications arise from the fact
that the efficiency of the particle detection set-up, dead
time, beam intensity etc. are not always known with good
precision. To deal with this, GOSIA uses normalisation con-
stants, which relate the calculated and experimental in-
tensities. These can be fitted or given by the user, as de-
scribed in the following sections. In the most general form,
the normalisation constant used in GOSIA is a product
of the Rutherford cross-section, the time-integrated beam
current, the absolute efficiency of particle and v-ray de-
tection and the particle solid angle factor. If the statistics
are not sufficient to make use of particle-y-ray angular cor-
relations (which is usually the case for radioactive beam
studies), y-ray spectra from individual detectors may be
summed together, reducing the number of necessary nor-
malisation constants to one per experiment. In such cases,
the relative y-ray detection efficiency as a function of en-
ergy has to be provided for each detector.

The normalisation constant, C', for a given experiment
is fitted to all measured ~y-ray intensities I¢ observed in
an experiment by minimising the expression

> (CL; —If)?/o?, (1)

?

where I{ denotes the calculated v-ray intensity for the i-th
observed transition integrated over beam energy and scat-
tering angle, I its measured intensity and o; its experi-
mental uncertainty. Moreover, it is possible to introduce
relative normalisation constants C,,, that link data sets re-
sulting from the subdivision of data collected during one
physical run into m slices of scattering angle. If for each of
m coupled experiments a relative normalisation constant
C,, is defined in GosIA, during the minimisation of the y?
function the following expression is minimised and only
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one global normalisation constant Cyional is fitted:
SN (CotobaiCinIf — I£)? /2. 2)

It should be noted that the C,, factors can be arbitrarily
rescaled, as the scaling factor can be always incorporated
in Cglobal. The normalisation constants are fitted in GOSIA
at the same time as the matrix elements, during the min-
imisation of the x2 function described in sect. 4.2.

The products C,,I{ that are compared to experimen-
tal y-ray intensities depend obviously both on the matrix
elements and on the normalisation constants. Especially
in the case of one-step excitation, one can easily com-
pensate a modification of the relevant matrix elements
by adjusting the normalisation constant. Therefore, in or-
der to obtain a reliable set of matrix elements, additional
constraints on either the matrix elements or the normal-
isation constants have to be provided. The possible tech-
niques, depending on the specifics of the experiment, are
presented in the following sections.

4.1.1 Elastic scattering

Historically, the simplest and most direct method of nor-
malising Coulomb-excitation cross-sections is to use the
measured elastic-scattering (Rutherford) cross-section.
This requires precise knowledge of the scattering angu-
lar range, efficiency of the particle detection system and
well understood dead time if one is to obtain the inte-
grated beam current. Since the Rutherford cross-section
is very sensitive to scattering angle at low centre-of-mass
angles, uncertainties related to geometry are minimised
for backscattering as demonstrated in refs. [28,29]. For
inverse kinematics reactions, the backscattered projectiles
are forward focused in the laboratory frame of reference
and have low energy. The corresponding recoils however,
can be utilised where clean kinematic separation of these
events can be made. In RIB experiments, where beam in-
tensities are low, the highest excitation probability is de-
sired and as such, high-Z targets are usually used. Un-
certainties are introduced because of events from different
scattering angles that can be misinterpreted. This is par-
ticularly true for many experiments utilising silicon strip
detectors at forward angles, such as those at GANIL [25]
and with Miniball at REX-ISOLDE [30].

In cases where absolute Rutherford cross-sections are
not reliable (for example when downscaling is applied to
single particle events and thus the dead time is different
as compared to particle-gamma events), particle singles
events may still be used to calculate the relative normal-
isation constants, C),. Commonly, this applies to experi-
ments where data is taken in the same run but is divided
into different angular cuts. For this, one needs knowledge
of the total number of scattered particles in each angular
range, N,,, i.e. without a coincidence condition on = rays
or a second particle. The two are related by the following
expression:

N,

Cm = R b

(3)
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where (A6,,,, Ad,,) represents the solid angle subtended in
the experiment. Again, C,, may be arbitrarily rescaled due
to the remaining normalisation fitted by GOSIA, Cgiobal,
but the ratios of each coupled C,, remains the same.

4.1.2 Excited-state lifetimes or B(E2) values

When multiple states are excited, with single- or multiple-
step Coulomb excitation, one or more B(E2) values con-
necting the ground state and an excited state can be used
to fit the normalisation constants for each experiment in
GOosIA, C,,. For this, one must also observe the corre-
sponding population of such a state with good precision,
which means that the v-ray intensity and efficiency, along
with the branching ratio, must be known to good preci-
sion. This is usually the simplest and preferred method in
these cases as everything is fitted by the code and there
are no additional calculations required by the user.

In even-even nuclei, the normalisation is usually ful-
filled by an independent measurement of the 2] -state life-
time, 7(2]). Two examples of this technique with RIBs,
are the cases of ™ 76Kr [25] and '82718%Hg [24, 26, 31],
where multiple lifetimes of yrast states were known in
the literature and even re-measured [23,32,33] to provide
the required precision. For odd-mass or odd-odd systems,
multipole mixing ratios also become important since the
strongest-observed 7 ray is often a mixed E2/M1 transi-
tion (see also sect. 4.4.3). Furthermore, low-energy transi-
tions in heavy nuclei can also be strongly converted, mean-
ing that the strongest excitation path may not result in
an intense y-ray decay. In these cases, it is usually possi-
ble to normalise to the next higher-lying transition since
the low energy of the first-excited state also means that
the probability of two-step excitation approaches that of
the single-step excitation, as was done in the analysis of
224Ra [34].

4.1.3 Target excitation

The electromagnetic interaction between the collision
partners causes excitation of either the projectile or target
nucleus. The observed excitation of target nuclei can usu-
ally be described with high precision using literature val-
ues of relevant matrix elements and used to normalise the
excitation cross-sections measured for beam nuclei. The
observed number of v rays in the transition de-exciting an
excited state in the target nucleus, can be described in the
following equation:

dN.
_ . Pa

N, 7

: bte'y (Et)eparto—ta (4)
where o; is the integrated cross-section of exciting the
given state in the target, b; is the total v-ray branching
ratio for the transition, e,(E;) is the absolute efficiency
of detecting a v ray of energy E, €part is the efficiency
of detecting a particle in the angular range defined by

the integration limits of the cross-section, pd is the thick-
ness of the target in mg/cm?, N, is Avogadro’s number,
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A; is the mass number of the target and L is the time-
integrated luminosity of the beam. A similar equation can
be constructed for the number of v rays in the transition
de-exciting an excited state in the projectile, assuming the
same angular range for particle detection:

PAN 4

N,=1L-
p At

“bpey (Ep)€partOp- (5)

Taking a ratio of egs. (5) and (4) removes both the
intrinsic particle detection efficiency and luminosity:

& _ bpey (Ep)op (6)

Nt th,y(Et)O't
meaning that one can solve eq. (6) for o, and there is
no requirement to have knowledge of the integrated beam
current. This is the principle of GOSIA2.

When dealing with RIBs, pure beams are often not
achievable and the target is also excited by beam contam-
inants. If the beam composition is monitored during the
experiment, this can be dealt with rather simply with the
following correction to the experimental ~-ray intensities
from the target [35]:

F= ! (7)

oi(Z.,A
1+Z (TCU (Zx A)))

where 0,(Z, A) is the cross-section of the target, excited
by a beam with proton number Z and mass A. For every
contaminant, ¢, with Z = Z., the ratio to the component
of interest with Z = Zx, can be expressed as r. = I./Ix,
where I, x is the intensity of the respective components
in the beam.

There also exists the possibility of impurities in the tar-
get. In this case the experimental intensities measured for
the beam must be corrected to account for the scattering
on target impurities. For this, knowledge of the isotopic
purity is required. This can be either from the target man-
ufacturer or the observed excitation ratios, deduced from
~-ray intensities, if available. Assuming only two compo-
nents, a correction factor, F;, can be calculated for each
excited state, i [27]:

where 0;(Z,A) and o;(Z', A’) are the excitation cross-
sections of a given state in the projectile on the main
target species and contaminant, respectively. These can
be calculated by GOSIA, obtaining the ratio for each tran-
sition given a set of starting matrix elements. The isotopic
purity, P, is expressed by

Na

P =
]\[14/7

(9)

where N4 4/ are the numbers of atoms of mass A, A’. By
taking the ratio of the cross-sections with different masses,
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at the same laboratory angles, the differences in Ruther-
ford cross-section and the centre-of-mass-dependent ex-
citation probabilities are accounted for. However, F; re-
mains an estimation since the excitation probability of
each state will depend in a complex manner on the elec-
tromagnetic matrix elements. A systematic error must be
retrospectively estimated due to this assumption by recal-
culating F; with the final set of matrix elements. Differ-
ences between the original and final estimations of F; are
usually small if P is large. In the case of 126Po on 94(9)Mo
(P = 95(2)%) [27], the maximum systematic error in F;
was calculated to be 0.6%, which is much smaller than the
statistical uncertainty.

4.2 x? square minimisation in GosiA

The set of electromagnetic matrix elements is extracted
by performing the minimisation of the y? function. The
total 2 function is built of measured y-ray intensities and
other known spectroscopic data, and those calculated from
a set of matrix elements between all relevant states. The
calculated ~-ray intensities are corrected for effects such
as: internal conversion of electromagnetic transitions, the
energy-dependent efficiency of the y-ray detectors and the
angular distribution of the emitted radiation. A proper re-
production of the experimental +-ray intensities requires
integration over the scattering angular ranges, defined by
the particle detection set-up, and over the range of inci-
dent projectile energies resulting from the energy loss in
a target. The convergence of the x? fit can be improved
by using known spectroscopic data, e.g. v-ray branching
ratios, multipole mixing ratios or lifetimes.

The x?2 function consists of three components resulting
from various subsets of data:

2=8,+ S+ S (10)

The first contribution, S, comes from the comparison
of y-ray intensities observed in the experiment, I, and
those calculated with the fitted matrix elements, i, and
is defined as

y*szJ Z

k(if) k

Cz]Ik ) 9 (11)

The summations extend over all defined experiments, i,
~v-ray detectors, j, and the detector- and experiment-
dependent number of observed transitions indicated by
k. The coefficients C;; are normalisation constants con-
necting experimental and calculated intensities. These are
equivalent to C}, described in sect. 4.1, but the summa-
tion now extends independently over the number of in-
dependent y-ray detectors as well as experiments or sub-
divisions. These are defined individually for each exper-
iment and detector combination and fitted on the same
basis as the matrix elements. The weights, w;;, ascribed
to the various subsets of data defined by different exper-
iments and ~-ray detectors, can be set independently by
user.
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The second contribution, S;, is related with the user-
defined “observation limit” and is defined as follows:

-5 ()

.
- u? (4, j)

(12)

An experiment and detector dependent upper limit of
~-ray intensities, u(Z,j), is expressed as a fraction of the
normalising transition specified by the user (usually it is
the strongest observed transition, i.e., 2 — 07 for even-
even nuclei). If the calculated intensity of any unobserved
~-ray transition, divided by the intensity of the normal-
ising transition, IS (7,J), exceeds this upper limit then it
is included in the calculation of the least-squares fit. The
summation extends over the calculated ~-ray transitions
in each experiment and detector combination not defined
as experimentally observed, provided that the upper limit
has been exceeded. A proper set of upper limits prevent
finding unphysical solutions yielding the production of
vy-ray transitions not observed in experiment.

The remaining term of eq. (10), Sy, accounts for the
additional spectroscopic data which can be included in the
fit: lifetimes, branching ratios, multipole mixing ratios and
known matrix elements. The summation extends over the
number of such data points, ng, given for each data type,
d, and user-defined weights, wy, which are common for a
given group of spectroscopic data:

1 c e \2
Sd:zdeO—T(Dnd_Dnd) 5
d ng Nd

(13)

where Dy and Dy =~ are the values of the spectroscopic
data calculated using the current set of best-fit matrix
elements and the experimental value, respectively.

A simultaneous fit of a large number of free parameters
(matrix elements), having unknown correlations and pos-
sibly very different influences on the data, prevents pre-
cise determination of degrees of freedom. In the simplest
cases without these issues, the number of degrees of free-
dom would be defined as a result of the subtraction of
the number of experimental data points and the number
of fitted parameters. The x? function resulting from the
GOSIA calculations is normalised to the number of data
points, including experimental intensities, branching ra-
tios, lifetimes, mixing ratios and known matrix elements.
In practical situations one deals exclusively with total x?
values, thus the normalised 2 value yielding from the
GOSIA code should be multiplied by the number of data
points given, regardless of the user-defined weight, w.

4.2.1 The GosIA2 code

When lifetimes of the lowest excited states are not
known with sufficient precision, the measured Coulomb-
excitation cross-sections need to be normalised in a dif-
ferent way, for example to the target excitation, as de-
scribed in sect. 4.1.3. The GOSIA2 code was developed
to handle the simultaneous analysis of both target and
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projectile excitation. The x? function of eq. (10) is min-
imised in parallel for the target and projectile whilst shar-
ing the normalisation factors as parameters across both
functions. Using literature values of relevant matrix ele-
ments in the target nucleus, the normalisation constants
can be constrained by the 7-ray intensities of the target
de-excitation. The solution then corresponds to the global
minimum of the total x? function defined as the sum of
x?2 functions for both reaction partners. If only two ma-
trix elements are used to describe the excitation of the
nucleus under study, a two-dimensional plot of the total
x?2 surface may be used to evaluate uncertainties of fitted
matrix elements, as described in more detail in sect. 4.3.2.
However, there are certain limitations of the code: when
more unknown matrix elements are involved, estimation
of their errors becomes more complicated and one of the
procedures described in sects. 4.4.2 and 4.4.3 are required.

4.3 Methods of error estimation
4.3.1 Standard error estimation in GOSIA

Statistical errors of the matrix elements are estimated af-
ter the convergence of the global minimum of the y? func-
tion and can be obtained from the probability distribu-
tion around the minimum. The applied method involves
two steps. At first, the diagonal, or uncorrelated, uncer-
tainties are calculated by sampling each matrix element
about the minimum of the x? surface, finding the point
where an increase in x? is achieved, satisfying the 1o con-
dition. This condition is defined by requesting that the
total integrated probability distribution in the space of
the fitted parameters be equal to the 1o confidence limit
—68.27% [5]. At the same time, a multi-dimensional cor-
relation matrix is built, which is then used in the second
step in order to compute the fully correlated errors on
each matrix element, satisfying the same condition.

4.3.2 Two-dimensional x? surface analysis

In a multi-parameter analysis, the global best fit can be
found by constructing a y? hyper-surface with respect to
all parameters. In the case of a two-parameter system one
is able to visualise a 2-dimensional y? surface as shown
in fig. 4(a). Here the example is of the two matrix el-
ements, (27 E2(07) and (2] E2(|2]), usually sufficient
to describe the excitation process of an even-even nucleus
if only the 2] — 0 transition is observed. The minimum
of such a surface, 2., can easily be found and the 1o-
uncertainty contour can be defined as the region of the
surface for which x? < 2., + 1 [36-38]. This technique
was used for the analysis of %Kr [39,40].

If one of the parameters is independently measured,
e.g. via lifetime measurements, the x? surface can be eas-
ily recalculated by adding the x? contribution of the new
measurement at every point. A new 1o contour is then also
defined, as shown in fig. 4(b). This goes too for other in-
dependent Coulomb-excitation measurements, which may
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Fig. 4. (a) A full two-dimensional x? surface with respect to
(27 |E2||0F) and (27| E2|2]) for the ®2Fe projectile, repro-
duced from ref. [41]. The data are normalised to the excita-
tion of a 4.0mg/cm? thick '°°Ag target at a beam energy of
2.86 MeV /u using GOSIA2. (b) The resulting surface when com-
bined with lifetime measurements [42,43] and a 1o cut applied
with the condition that x* < xZ;n + 1. The individual 1o con-
tours for the Coulomb-excitation and lifetime data are shown
by the solid and dashed lines, respectively. Reproduced from
ref. [41].

come from the segmentation of a data set into angular
ranges (see the example in fig. 5) or different targets as
described earlier. The final uncertainties are obtained by
projecting the 1o uncertainty contour on the respective
axes. While the projected uncertainties are useful for un-
derstanding the precision on a given spectroscopic observ-
able, such as B(FE2) values or spectroscopic quadrupole
moments, the existing correlation between these parame-
ters is lost.

In the past, the assumption that the influence of the
spectroscopic quadrupole moment, @), is negligible, or
that otherwise its value can be assumed to be equal to
zero has sometimes been used. In the case of 92Fe, if it
was not for the independent lifetime experiments, shown
by the solid black line in fig. 4(b), the 2-dimensional lo
surface would not be constrained. One possibility is to
project such a surface with a single value of Q,, or cal-
culate only a 1-dimensional surface at a fixed value of
Qs. However, this would greatly underestimate the uncer-
tainty, since correlations are ignored. In the ?“*Rn exam-
ple of fig. 5, this leads to a factor of 3.5 reduction in the
true uncertainty. Instead, it would be preferable in these
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Fig. 5. A two-dimensional x? surface with respect to
(27||E2||0F) and (2 ||E2||2]) for 2°*Rn [44]. A 1o cut is ap-
plied with the condition that x? < x2;, + 1. The data is nor-
malised to the excitation of a 4.0 mg/cm? thick %% Ag target at
a beam energy of 2.90 MeV /u using GOsIA2. The data was sub-
divided into five different scattering angular ranges and their
individual 1o limits are represented by the different bands; in
increasing order of centre-of-mass scattering angle these are:
solid black, dashed black, dotted black, solid grey and dashed
gray.

cases to use a model assumption where necessary to pro-
vide limits of Q as a function of (2] | F2[|0]), for example
the rigid rotor model [45]. The total surface can then still
be constrained but with a reasonable consideration of the
uncertainty due to the influence of Q.

The graphical method however, becomes computation-
ally time consuming and visually useless as the number
of parameters increases. Therefore alternative solutions of
error estimation are proposed and some examples are pre-
sented in the following sections. Their applicability de-
pends on the strength of the correlations between matrix
elements.

4.4 Selected applications

4.4.1 Normalisation to the B(FE2) extracted from data sets
where no correlations are observed

The influence of the quadrupole moment of a given state
on its excitation probability varies significantly with scat-
tering angle as shown in fig. 1. This dependence can be
exploited in order to determine both the transition prob-
ability and the diagonal matrix element, even if only one
~-ray transition is observed in the nucleus of interest. If
the particle detector covers a sufficiently broad range of
centre-of-mass scattering angles, the simplest solution de-
scribed in ref. [46] can be applied. Here, in the first step,
the B(E2;2{ — 0%) value is derived from the excitation
cross-section of the 2] state for the lowest scattering an-
gles. The influence of the quadrupole moment, Q(27),
on the excitation probability of the 2] state for this range
of scattering angles was estimated at 4%, which was be-
low the statistical error of 7% of the corresponding -
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ray intensity. It was therefore a reasonable approxima-
tion to assume that in this case the observed transition
strength depends only on the transitional matrix element.
The adopted uncertainty of the B(E2;2] — 07) included
contributions from the statistical error of measured ~-ray
intensities in **Ar and '°?Ag, as well as the uncertainty
on the relative v-ray efficiency, target matrix elements
and the systematic error of 4% resulting from neglecting
Qs(27) in the Coulomb-excitation calculations. In the sec-
ond step, this B(E2;2] — 0]) and its uncertainty were
used in the further analysis as an additional data point
in a GOSIA fit. The remaining data was then subdivided
into three angular ranges, with the width and number of
ranges being chosen to obtain the maximum sensitivity to
Qs(2]). The 7-ray intensities of **Ar from these ranges
were normalised to the intensity measured for the first
range, with relative normalisation factors fitted using the
corresponding '%°Ag ~-ray intensities. Then the standard
version of the GOSIA code was used to simultaneously fit
all the transitional and diagonal matrix elements to the
measured intensities.

4.4.2 Multiple Coulomb excitation and normalisation with a
dominant transition to target excitation: combined
GOSIA-GOSIA2 analysis

In multiple Coulomb excitation of even-even nuclei, sev-
eral states can be populated. In such cases the 2f state
is usually dominantly populated as compared to other
excited states. When the lifetime of the 2 state is not
known with sufficient precision and the B(FE2;2{ — 07)
value cannot be extracted as described in sect. 4.4.1, mea-
sured Coulomb-excitation cross-sections need to be nor-
malised in a different way using e.g., target excitation.
However, a full analysis with the GosiA2 code, as pre-
sented in sect. 4.4.3, is not possible as the number of pa-
rameters increases significantly. The error estimation in-
cluding correlations between all matrix elements involved
becomes very complex and practically impossible. A dif-
ferent solution needs to be found that handles both as-
pects: 1) normalisation to the target excitation and, ii) er-
ror calculations including correlations between all matrix
elements. In such cases a combined analysis is required
with the use of both standard GosIA and GOSIA2 codes.
In the first step, a simplified analysis is performed aim-
ing to determine the B(E2;2] — 0]) value for the projec-
tile. Only one-step excitation of the 21" state is considered,
taking into account that population of the 2;‘ state de-
pends predominantly on both the B(E2;2{ — 0) value
and spectroscopic quadrupole moment, QS(QT). In order
to gain sensitivity on the extraction of the quadrupole
moment of the 2] state, the data are divided in terms
of particle-scattering angular range. The influence of the
multi-step excitations resulting in population of higher-
lying states is not usually included at this stage, although
the level energies and a set of fixed “starting” matrix el-
ements can be declared if reasonable assumptions can be
made concerning their magnitudes and relative signs. The
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analysis is performed as described in sect. 4.2.1 using the
GOSIA2 code. As a result a two-dimensional total x? sur-
face (being the sum of x? for the projectile and target
system) as a function of the B(F2;2] — 0]) value and
the quadrupole moment (21+) is determined and reflects
correlations between these two parameters. The final val-
ues are determined by the minimum of the y? function and
their error bars are obtained by projecting the lo-contour
on the respective axes, as in sect. 4.3.2. The extracted
B(E2;2{ — 07) value is a first approximation. Its uncer-
tainty includes: i) the uncertainties of the y-ray intensities
originating from the target excitation, ii) the uncertainties
of the «-ray intensities originating from the projectile exci-
tation and, iii) the uncertainties of the relevant, literature
B(E2) values for the target nucleus.

In the second step, correlations with all remaining ma-
trix elements, which couple higher-lying excited states ob-
served in the experiment have to be investigated. This is
performed using the standard GOSIA code with full er-
ror estimation procedure (see sect. 4.3.1) implemented in
GOSIA. All states populated in the Coulomb-excitation ex-
periment, together with all observed ~-ray intensities are
taken into account in this part of analysis. All involved
electromagnetic matrix elements are now introduced as
well. Data extracted from the simplified GOSIA2 analysis,
specifically (0 ||E2||2]), serves as an absolute normali-
sation for the standard GOSIA calculations. It is declared
together with its uncertainty as an additional data point
and thus it is treated in the fit on equal rights as the v-ray
intensities. Other spectroscopic data i.e., y-ray branching
ratios, mixing ratios, can also be included at this stage of
analysis if known. Note that the (2] || £2||2]) diagonal ma-
trix element extracted for the projectile in the first part of
the analysis is not included as an additional data point in
the fit when switching to the standard GOSIA calculations.
Information on (2] || E22]) is implicitly given by the rel-
ative normalisation constants extracted from the target
excitation linking different angular data subdivisions.

In order to link each data set resulting from subdi-
vision into several particle-scattering angular ranges, the
relative normalisation constants are required. These are
usually calculated from the target excitation. The stan-
dard GOSIA fit of observed v-ray intensities depopulat-
ing excited states in the target nucleus is performed us-
ing literature values of all relevant matrix elements (see
sect. 4.1.2). Calculated relative normalisation constants,
Cij;, for each data set are then further used to fit the
projectile excitation. A small correction is applied here
to achieve the same relative normalisation constants ob-
tained in the GOSIA2 solution, where the projectile data
is also considered. This is calculated using the ratio of
the calculated yields for the normalisation transition in
the target, IS(4,j), from the GOSIA2 and standard GOSIA
solutions. The fixed coupling of the relative normalisa-
tion constants removes the knowledge of the uncertainty
in their ratio. In order to preserve such information in the
fit, it is included indirectly. The uncertainty of the ~-ray
intensities related to the 27 — 0 transition in the pro-
jectile, AI}Y’(QEIr — 07), to which we are normalising, is
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defined in GOSIA so that it encompasses the uncertainty
from the target excitation

-1
2 2 pp2 1

AIP? = AP 4 1P (ZW> . (14)
Vi

i

where [P and A’ I7 are the efficiency-corrected intensity
and its associated uncertainty, of the 27 — 07 transition
in the projectile, respectively, and Alfn can be expressed
as

2 ‘ 2
AL AT n AB(E2;i — gs.) (15)
i IL B(E2;i — g.s.) ’

where I! and A'I! are the sum of efficiency-corrected
intensities and associated uncertainties (in quadrature) of
transitions depopulating a state ¢ in the target, respec-
tively. This assumes that this state is dominated by single-
step excitation from the ground state and consequently by
B(E2;i — g.s.) and its uncertainty, AB(E2;i — g.s.).
As a result of the second part of the analysis with the
use of the standard GOSIA code, a set of electromagnetic
matrix elements between all states populated in the ex-
periment is extracted. Note that the (07 || E£2]|2]) matrix
element, used as an absolute normalisation for the full
standard GOSIA fit, originates from the simplified GOSIA2
calculations where multiple Coulomb excitation was not
necessarily correctly considered. This influence needs to
be taken into account. For this purpose, the GOSIA2 cal-
culations have to be repeated using the set of matrix
elements extracted in the second step of the analysis.
Only (0 ||E2||2]) and (2] ||E2|2]) for the projectile are
scanned as in the first approximation, while all the other
matrix elements for the projectile are fixed and those for
the target remain free. As a result, a new total x? surface is
calculated. Again, the (0] || £2[/2]) matrix element is de-

termined from the x? < x2;, + 1 condition. It may differ
from the value obtained from the first approximation since
the correlations with other matrix elements will be differ-
ent. If this is the case, a full standard GOSIA analysis with
the updated value of the (07 ||F2|/2]) matrix element has
to be repeated in order to achieve consistency. The whole
standard GOSIA-GOSIA2 procedure should be iterated until
the converged solution for both transitional and diagonal
matrix elements for the 2 state is obtained. A schematic
procedure of the GOSIA-GOSIA2 analysis is presented in
fig. 6.

In some cases, such as ?Po [27], the y-ray intensity
of higher-lying transitions is too weak to be reliably ob-
served in each of the angular subdivisions. For this data
to be included, an additional data set must be declared
in the GOSIA stage of the analysis that represents the sum
total of all angular ranges. The simplest way to normalise
this data is to use the total intensity of the 27 — 0f
normalisation transition allied with the B(E2) value that
is already declared. This intensity then exclusively con-
strains the absolute normalisation of the total data set
with an uncertainty determined by the combination of the
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Fig. 6. A scheme of the combined analysis performed with
the standard GOSIA and GOSIA2 codes. The presented method
is used when normalisation to the target excitation is required
in multiple-step Coulomb excitation of even-even nuclei. The
red matrix elements in the level scheme of the figure are kept
fixed during the GOSIA2 calculations, while the blue matrix
elements are scanned to produce a 2-dimensional total x? sur-
face plot (top right). All matrix elements are varied in the
full GoSIA minimisation and the best-fit values are used in the
next GOSIA2 calculation. Convergence is reached when the blue
matrix elements are consistent in both GOSIA and GOSIA2 cal-
culations.

B(E2) and I,(2] — 0f) uncertainties. During the corre-
lated error calculation, this uncertainty on the absolute
normalisation is effectively propagated to the higher-lying
transitions.

4.4.3 Normalisation to target excitation when multiple
single-step excitations are observed

When multiple, single-step excitations are observed with
similar intensity, such as in odd-mass systems, there are
too many parameters to make an analysis of a full x?
hyper-surface feasible. Instead, a one-dimensional surface
is constructed for each matrix element by scanning the
parameter to be investigated. At each point, the investi-
gated parameter is kept fixed while all others are min-
imised with respect to x2. For this, the minimisation pro-
cedure of GOSIA2, described in sect. 4.2.1, is invoked. This
procedure traces the lowest value path through the valley
of the hyper-surface, effectively projecting the correlated
surface to a given parameter. The constructed surface can
then be used in order to extract the 1o uncertainty using
the standard x2 . +1 method [38]. There is an assumption
here of parabolic behaviour about the minimum, which for
strongly correlated systems may not necessarily be true
and asymmetric limits may be obtained.
Computationally, the time involved to minimise the
full parameter space hundreds of times is very large. For
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this reason, alternative methods of normalisation are pre-
ferred, but Coulomb excitation of odd-mass or odd-odd
systems with RIBs tend to lack the required lifetime and
multipole mixing ratio data to sufficient precision. This
approach has been successfully used for the analysis of
Miniball experiments on odd-mass Sn isotopes [47,48] and
the odd-odd ?5Na [49].

4.4.4 Normalisation to target excitation in a strongly
correlated odd-mass system

In the example of *’Rb, a strongly deformed band built
on the 3/2% ground state is populated in Coulomb exci-
tation with a ONi target [50]. Mixed E2/M1 1 — I —1
transitions are roughly one order of magnitude stronger
in intensity than I — I — 2 transitions. In order to ex-
tract transition probabilities in the low-energy part of the
band, normalisation to target excitation is necessary. On
the other hand, transition probabilities between the states
that can only be reached in multi-step excitation are re-
lated to measured intensity ratios in the nucleus of inter-
est. As an example, the 47 — 27 /2 — 0] intensity ra-
tio observed in Coulomb excitation of a weakly deformed
even-even nucleus, assuming quadrupole moments equal
to zero, depends exclusively on the (4] ||E2]|2]) matrix
element; changing the (0] || E£22]") matrix element would
influence the total number of counts in both transitions,
but not the ratio. This is no longer true if a significant frac-
tion of nuclei (few percent) undergo excitation in each step
of the process, which is often the case of deformed nuclei
including *"Rb, but still observed relative intensities in the
upper part of the band depend only weakly on lifetimes
of the lowest-excited states. Therefore the analysis can
be divided in two parts: the (7/27||E2[[3/2") matrix ele-
ment is determined using normalisation to target excita-
tion (GOSIA2 analysis), and the remaining matrix elements
are extracted from the intensities measured for *"Rb us-
ing the GosIA code, fixing (7/21| E2||3/2") at the value
determined in the first part of the analysis. The choice of
this matrix element was due to the fact that it corresponds
to the only pure E2 transition from the ground state. The
GOSIA2 code is used to find a minimum of the x? func-
tion resulting from comparison of measured and calculated
~-ray intensities in ®’Rb and %°Ni, as well as known spec-
troscopic data in °Ni (B(E2;2T — 07) and Q.(2])).
Measured intensities of the 2+ — 0% transition in %°Ni
were scaled according to the measured beam composition,
and their statistical uncertainties were adjusted to take
into account the uncertainty of the beam composition, as
described in sect. 4.1.3. The minimisation is performed for
several hundred starting values of (7/27||E2[|3/2%) rang-
ing from 0 to 3 eb. The (7/2%|E2||3/2") matrix element
was fixed during the minimisation, while all other matrix
elements are allowed to vary, with only constraints result-
ing from Alaga rules [51]. In this way correlations between
matrix elements are taken into account. Figure 7 presents
the x? distribution as a function of (7/2%|E2[[3/2%) in
the vicinity of minimum. The vertical lines correspond to
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Fig. 7. Total x* as a function of (7/27|F2||3/2%) in *'Rb.
The open points show the x? obtained after convergence of
the minimisation procedure, and the solid line is a polynomial
fit of the x? distribution. The vertical lines correspond to x2;,
(solid) and x? = xZ;, + 1 (dashed; 1o error bar).

the adopted mean value (minimum of the y? distribution)
and error bars (x? = x2,, + 1) for the (7/2%| E2|]3/27F)
matrix element.

The second part of the analysis is performed using
GOSIA with the (7/27||E2[|3/2%) matrix element fixed
at the value determined in the first part of the analy-
sis. The errors of all remaining matrix elements are esti-
mated using the standard error evaluation procedure im-
plemented in GOSIA (see sect. 4.3.1). For transitions de-
exciting states up to 11/2T, it also is necessary to prop-
agate the uncertainty of (7/2%[E2|/3/2T). For higher-
lying transitions, contributions of this source of error to
the total uncertainty is determined to be negligible. In
this part of the analysis, (7/27||E2||3/2%) is fixed in-
stead of being fitted as an additional data point in or-
der to make sure that its uncertainty is properly propa-
gated. When (7/27|E2||3/2"), with the uncertainty de-
termined in the first part of the analysis, is simply in-
cluded in the fit on an equal basis as the y-ray transi-
tion intensities, its final uncertainty (and in consequence
those of other matrix elements) is underestimated by the
standard procedure of errors evaluation in GOSIA, as the
X2 minimum with respect to this matrix element is arti-
ficially made deeper by including two data points corre-
sponding to the same observable ((7/2%[E2[[3/2%) and
the 7/2t — 3/2" transition intensities) in the fit. Such
an effect has not been observed in the combined GOSIA-
GOSIA2 analysis of Coulomb-excitation data in even-even
nuclei (see sect. 4.4.2) since there the 2 — g.s. transition
is dominant, known with better precision than other v-ray
intensities and thus its intensity serves basically to calcu-
late the relative normalisation parameters for each exper-
iment. In the case of “"Rb, the 7/2+ — 3/2T transition
is roughly 20 times weaker than the strongest I — I — 1
transitions in this nucleus, which are consequently used to
calculate the relative normalisation parameters.
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Fig. 8. Total x? as a function of Qo in °’Rb under the as-
sumption of the rigid rotor model for all £2 matrix elements.
The open points show the x? obtained after convergence of
the minimisation procedure, the vertical lines correspond to
XZin (solid) and x? = xZ;, + 1 (dashed; 1o error bar). The
weighted average of Qo values calculated from individual E2
matrix elements obtained in the full Coulex analysis including
normalisation to the target excitation is shown in red.

4.4.5 Normalisation to transition intensities in the nucleus
of interest

In very favourable cases of collective nuclei an estimation
of transition probabilities can be obtained from the ratios
of transition intensities in the nucleus of interest. It re-
quires, however, strong model assumptions concerning the
collectivity of the states (purely rotational or vibrational
character). This procedure has been tested on the “"Rb
data where all £2 matrix elements between the observed
states were coupled assuming the rigid rotor model. In
this way one single parameter, corresponding to the tran-
sitional quadrupole moment Qg of the band, was used to
describe the E2 part of the measured gamma-ray inten-
sities. No assumptions were made on the M1 matrix ele-
ments of the mixed E2/M1 I — I—1 transitions and in to-
tal 7 parameters (one () value and 6 M1 matrix elements)
were fitted to twenty measured ~y-ray intensities. In order
to estimate the uncertainty of the extracted Qg value, the
minimisation procedure was performed again for several
hundred values of @y kept fixed during minimisation with
M1 matrix elements free to vary. A distinct minimum of
the x? distribution was found as shown in fig. 8. Both
the obtained value of Qg, as well as the error bars corre-
sponding to x? = x2;,+1 are consistent with the weighted
average of Qg values calculated from individual £2 matrix
elements obtained in the full Coulomb-excitation analysis
including normalisation to the target excitation, presented
in sect. 4.4.4.

4.5 Dealing with non-standard particle detectors

Particle detectors used for RIB Coulomb-excitation ex-
periments are usually axially symmetrical and have an
absolute efficiency close to 100%. As long as the efficiency
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Fig. 9. Example of a complicated detector shape in 6 and ¢
coordinates: an off-centered annular detector with some parts
damaged due to the high flux of incoming particles. The colors
correspond to the number of detected events per pixel.

is uniform, any deviations from 100% are included in the
normalisation constants (see sect. 4.1). However, with the
expected increase of RIB intensities, the standard annular
Si detectors that are currently used will likely be replaced
by more complicated particle detection set-ups, possibly
consisting of various types of detectors differing in ef-
ficiency. In addition, radiation damage may deteriorate
parts of a detector, resulting in a very complicated shape
in the 6-¢ plane.

4.5.1 Complex particle detector shapes

In the example of ** Ar [46], the beam was not well focused
and had a halo of about 0.5% of the total intensity, hitting
the particle detector directly. Some parts of the particle
detector had to be excluded from the analysis due to dete-
rioration caused by the direct beam and resulting impossi-
bility of distinguishing between direct and scattered beam.
Together with a non-axial position of the beam spot, this
resulted in a complicated shape of the detector in the 6-
¢ plane (see fig. 9), which had to be taken into account
during the Coulomb-excitation analysis using the stan-
dard GOsIA code. The standard methods of describing the
particle detection geometry provided by the code did not
allow a proper handling of this complication. Therefore a
new method was introduced and tested. Each of the 1536
pixels of the detector (96 strips by 16 annular rings) was
approximated by a small circular detector, whose size was
chosen to optimally reproduce both the absolute Ruther-
ford cross-section and the calculated correction factors'

! The correction factors, introduced in the GOSIA code in
order to speed up the minimisation process, are defined for each
observed ~y-ray transition as a ratio of its intensities calculated
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for both **Ar and '°?Ag. The results of such approxima-
tion as compared to a standard integration procedure were
verified for each strip and the differences were below 2%
for all transitions. The correction factors depend weakly
on actual values of matrix elements and thus the veri-
fication performed for the initial set of matrix elements
remain valid throughout the minimisation procedure. The
difference between the quadrupole moment of the 2?‘ state
obtained from the analysis with a proper detector shape
taken into account and of that when it was assumed to be
axially symmetric with all segments working, was around
20%.

4.5.2 Non-uniform particle detector efficiency

If the efficiency of the particle detector changes as a func-
tion of scattering angle, this information should be in-
cluded in the detector description used by the GOSIA code.
This can be done by modifying the shape of the particle
detector with respect to its real angular coverage. The
simplest solution, used in the analysis of Coulomb exci-
tation of 1°2Sm [52] is to reduce the detector coverage in
the ¢ plane according to its relative efficiency. The '3¢Xe
ions scattered on the '°2Sm target were identified in the
focal plane of the VAMOS spectrometer placed at 35°,
which corresponds to the detection of ions scattered at
angles between 28° and 42° in # and —7° and 7° in ¢.
The simulated detection efficiency as a function of 8 scat-
tering angle [53] is presented in fig. 10(a), and resulting
particle detector shape included in GOSIA in fig. 10(b): in
the maximum of the efficiency curve the real coverage in
¢ has been assumed, and for other scattering angles it has
been scaled according to the efficiency.

Such a solution works well if the effects of particle-
vy-ray correlations can be neglected, i.e. when the v-ray
detection set-up consists of many detectors placed sym-
metrically in 8 and ¢ and the v-ray intensities from all de-
tectors are summed together. The efficiency curve should
also be relatively smooth and simple, which is the case
of the presented example. In other cases, however, such a
modification of the particle detector shape may affect the
calculated particle-gamma angular distributions and, in
consequence, the extracted matrix elements. An alterna-
tive method has therefore been tested, similar to the one
presented in sect. 4.5.1. The detector has been approxi-
mated by a set of 729 small circular particle detectors. In
the first step the particle detector was assumed to have a
uniform 100% efficiency, which corresponded to a rectan-
gle in the 6-¢ plane or alternatively to all pixels having the
same size. This size was adjusted to reproduce both the
Rutherford cross-section and correction factors for *2Sm
calculated for the rectangular particle detector. In the sec-
ond step the size of each pixel was scaled according to the
relative efficiency, as presented in fig. 10(c).

for a given set of matrix elements: the one integrated over the
angular range covered by the particle detector and the range of
incident energies resulting from slowing down of beam particles
in the target, and that calculated for mean values of beam
energy and scattering angle specified by the user.
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Fig. 10. Two methods to take into account the non-uniform
particle detector efficiency in GOSIA analysis. (a) Absolute ef-
ficiency of the particle detector as a function of 6 scattering
angle [53]. (b) Detector shape resulting from relating its cover-
age in ¢ to the efficiency; dashed lines correspond to the true
coverage of the detector. (¢) Approximation of the detector by
a large set of pixel-like circular detectors, whose sizes reflect
the efficiency.

The results of the two approaches were compared and
were compatible within 2% for excitation of states up to
12%. On the other hand, when the reduction of efficiency
at the edges of the detector was neglected, the calculated
relative y-ray yields differed by up to 14% as compared
to that calculated taking the non-uniform efficiency into
account. The effect was the strongest for multi-step exci-
tation and non-yrast states.

4.6 Other sources of systematic errors

Numerous approximations are used in the GOSIA code, de-
scribed in details in ref. [5]. They may amount to up to 5%
of the calculated ~-ray intensity and thus very small error
bars that may result from GOSIA error estimation proce-
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dure should be treated as statistical errors only and fur-
ther adjusted to take into account the systematic errors.

The most important source of systematic error is usu-
ally related to the semi-classical approximation of the
Coulomb-excitation process used in the analysis. This
simplified treatment is expected to differ from a full
Coulomb-excitation calculation by a factor of 1/v, where
v is the Sommerfeld parameter [54], which for heavy ions
(v ~ 10%) amounts to a few percent. Other sources of sys-
tematic errors arising from approximations used in the
GOSIA code are discussed for example in refs. [14,55] and
most of them (corrections due to atomic screening, vac-
uum polarisation, relativistic effects, F4 excitation) are
found to be negligible.

The deorientation effect (modification of the nuclear
state alignment due to the interaction with the rapidly
fluctuating hyperfine fields of the deexciting atom re-
coiling in vacuum) influences the ~-ray angular distribu-
tions observed in Coulomb-excitation experiments. Cur-
rent atomic model predictions of the deorientation effect
are too computer intensive, and not yet viable, to con-
sider their incorporation into GOSIA. Instead a schematic
two-state model has been adopted with parameters fitted
to available deorientation effect data [5,56,57]. Extensive
studies [58] of the efficacy of the deorientation correction
implemented in GOSIA have shown that, on average, the
default values adopted in GOSIA work surprisingly well.
On the other hand, averaging over particle and y-ray de-
tection angles washes out the sensitivity to the angular
correlation effects for -ray deexcitation and thus min-
imises the influence of deorientation on the results. In the
104Ru case [55], changing the parameters of the deorien-
tation model by 20% produced less than 2% change in the
fitted matrix elements.

The effect of virtual excitation of the giant dipole reso-
nance can influence the excitation of low-lying states. This
is taken into account using the concept of dipole polariz-
ability [54] and applying a correction to the quadrupole
interaction. This effect becomes important for light nuclei.
In the analysis of °Be [59] it was found that the uncer-
tainty of 25% on the polarizability parameter translated
into 20% uncertainty on the diagonal matrix element of
the first-excited state.

The integration procedures used in GOSIA to account
for beam stopping in the target and the angular coverage
of the particle detector may be quite sensitive to user-
defined meshpoints. This is true in particular for compli-
cated shapes of the particle detector, large ranges of in-
cident energies (i.e. “thick-target” measurements, where
the beam is stopped in the target), small scattering an-
gles and high energies of excited states (above 1MeV in
a single step). The influence of meshpoints on calculated
integrated 7-ray intensities should be in any case verified
and, if the differences between the calculated integrated
yields for different sets of meshpoints are comparable with
statistical uncertainties of the ~-ray yields, should be in-
corporated in these.

Especially for well-deformed, or on the contrary, non-
collective nuclei the lifetimes of Coulomb-excited states
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may be as long as nanoseconds. In such cases it is essential
to take into account the modification of ~y-ray efficiency
due to the modified solid angle covered by the y-ray de-
tectors. This effect was observed for example in analyses
of 7Rb [50] and %®Sr [60] MINIBALL data and the af-
fected transition intensities were either excluded from the
analysis [60] or their statistical errors increased to take
into account the modified efficiency [50].

The standard minimisation procedure works best if
only E2 matrix elements are needed to describe the ob-
served excitation. The probability of getting trapped in a
local minimum increases with every multipolarity included
in the calculations. In particular, it is often observed that
the errors on M1 matrix elements are underestimated.
Many sets of starting values of matrix elements, includ-
ing relative signs, should be tested before final values of
matrix elements and their uncertainties are determined.

5 Summary and outlook

In summary, we have presented a number of methods for
normalisation of Coulomb-excitation data with Radioac-
tive Ion Beams (RIBs), using the GOSIA and GOSIA2 codes.
Analysis techniques have been presented with reference to
specific cases where the techniques were pioneered. While
excited-state lifetimes, in combination with other inde-
pendent spectroscopic data, provide the simplest method
of normalising Coulomb-excitation data, we have shown
that it is possible to treat data in different ways, such
as normalising to target excitation. These methods and
techniques will gain an even greater importance as a
wider range of post-accelerated RIBs become available
at the next generation of ISOL facilities, such as HIE-
ISOLDE [61], SPIRAL2 [62], ARIEL [63], CARIBU [64]
and SPES [65]. In particular, the higher beam energies of-
fered for heavy exotic nuclei will produce data for which
multiple-step Coulomb excitation of isotopes with a lack
of spectroscopic data in the literature, becomes standard
fare.
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