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Abstract. The AGATA Detector Library (ADL) was developed for the calculation of signals from highly
segmented large volume high-purity germanium (HPGe) detectors. ADL basis sets comprise a huge amount
of calculated position-dependent detector pulse shapes. A basis set is needed for Pulse Shape Analysis
(PSA). By means of PSA the interaction position of a γ-ray inside the active detector volume is determined.
Theoretical concepts of the calculations are introduced and cover the relevant aspects of signal formation
in HPGe. The approximations and the realization of the computer code with its input parameters are
explained in detail. ADL is a versatile and modular computer code; new detectors can be implemented in
this library. Measured position resolutions of the AGATA detectors based on ADL are discussed.

1 Introduction

For more than five decades, High-Purity Germanium
(HPGe) detectors have been at the heart of powerful spec-
trometers which allow ever growing insight into the atomic
nucleus [1]. Latest developments of HPGe detector tech-
nology, instrumentation of data acquisition and processing
have led to a refined detection technology which allows to
deduce position information from signals of these semicon-
ductor detectors. Especially the digitization of the detec-
tor pulses with high resolution, high bandwidth and high
sampling frequency over a meaningful time period enables
to acquire the pulse shapes of the detector signals. This
additional information is exploited to determine the po-
sition of charge generation inside the detector volume. In
order to localize the scattering sequence following a γ-ray
interaction inside a segmented HPGe detector, the exper-
imental pulse shapes are compared to a basis data set of
position dependent pulses. For pulse shape analysis (PSA)
a huge amount of pulses have to be provided for typically
more than 40000 basis sites per crystal assuming a Carte-
sian grid which is needed to cover the volume of a large
HPGe detector.

The reference pulse shapes are collected in lookup li-
braries. The detailed comparison between reference pulse
shapes and measured pulse shapes is in fact the task of
PSA algorithms [2–5] which have to identify the most
probable interaction position within the active detector
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material. Meanwhile the two γ-ray tracking spectrome-
ters AGATA [6] and GRETINA [7] are based on PSA of
signals from segmented HPGe detectors to obtain position
information on the interaction of γ-rays.

There exist two different procedures to generate the
basis set of pulse shapes: it can be obtained from exper-
iment with the existing detectors or the pulses are the
result of a calculation which takes all the relevant aspects
for a final comparison with measured information into ac-
count. For the experimental solution dedicated scanning
tables have been developed for the large HPGe detectors
in recent years. The scanning table uses a heavily colli-
mated γ-ray source, usually a very strong 137Cs source
producing a pencil beam of gamma-rays to select interac-
tions taking place at a particular position inside the de-
tector volume. The x, y-coordinate of the collimator posi-
tion defines one part of the coordinates of the interactions,
whereas the coincident detection of a Compton scattered
γ-ray inside a secondary collimation system completes the
event selection. The interaction position in the z-direction
inside the germanium is then defined by the intersection
of both collimator openings. Multiple interactions are sup-
pressed by requiring additional conditions on the detected
energy. Such scanning systems have been built in Liv-
erpool [8, 9], Orsay [10], Salamanca and Strasbourg [6].
At GSI, Darmstadt a technique based on positron anni-
hilation was suggested [11, 12]. However, such scanning
methods are very time consuming, such that until now,
the required reference pulse shape libraries could not be
entirely established by measurement alone. Development
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of faster characterization procedures [13,14] are therefore
still of high interest. After such characterization, the error
between simulation and experiment can be brought down
to less than 2% of the full energy signal [15]. However,
the extremely time consuming nature of the experimental
scanning methodology favours the more practical way to
generate a full basis of pulses by calculation.

The AGATA spectrometer employs PSA to determine
the positions of the interaction points with a much higher
position resolution than the physical segmentation of the
detector volume [16]. A γ-ray causes typically a chain of
interactions in the germanium detectors (e.g. 3–4 interac-
tion points at an energy of 1.3MeV). There can be more
than one interaction in one segment of a detector and the
γ-ray can be scattered to another segment of the same
crystal or to an adjacent detector. A high precision of
the interaction positions is required in order to perform
the subsequent γ-ray tracking with high accuracy [17,18].
For the design of AGATA a position resolution of 5mm
(FWHM) was assumed [19]. The preamplifier signals of
all 36 segments and the core electrode of every detector
are digitized using a 14 bit analogue to digital converter
with a rate of 100MHz. The large dataset from the single
crystal are compared to the calculated existing set of sig-
nal pulses. This comparison includes the signal of the core
electrode, the signal of the hit segment electrode and the
signals from the neighboring segment electrodes for ev-
ery interaction. This is needed because the size and shape
of the bipolar transient signals induced in the neighbor-
ing segment electrodes contain the important information
for the angular and z position of the interaction. In the
case of AGATA, a detector crystal has a large volume of
∼= 380 cm3 and a weight of ∼= 2kg. The required PSA li-
braries typically contain over 105 reference pulse shapes.
Combined with the segmentation of the capsule, the PSA
achieves position resolutions of about 4mm FWHM [20]
for the AGATA detectors.

In order to generate a data base for looking up the
individual positions inside the Ge detector volume the
pulses are calculated by performing an elaborate detector
characterization which includes a minimum of input pa-
rameters to simulate the complete detector response after
the γ-ray interaction. For this reason simulation codes for
HPGe detector have been developed within the AGATA
Collaboration: the Matlab based Multi Geometry Simula-
tion code (MGS) [21,22], the Java AGATA Signal Simula-
tion toolkit (JASS) [23] and the AGATA Detector Library
(ADL) which is subject of this publication. ADL data ba-
sis were employed for PSA of all in-beam experiments with
the AGATA detectors up to now.

In the first part of the paper the general concepts and
basic assumptions are introduced. The following sections
explain the calculations of electrical fields, charge carrier
mobilities and mirror charges. The experimental impact of
the response function and the crosstalk contributions are
explained next. Main part of the paper is the section on
the ADL code describing its structure, the detailed calcu-
lations of the various subroutines and the determination
of accurate input parameters for individual Ge crystals.

At the end the achieved results on position resolution are
presented and discussed.

2 Simulating HPGe detectors

Semiconductors in general are described by the Van Roos-
broek equations [24] which, aside from the Poisson equa-
tion for the electrical field, also comprises continuity equa-
tions for the electron and hole densities. For the silicon
industry, commercial packages like Silvaco [25] and Syn-
opsys [26] are available to solve these equations. However,
even for experts, solutions to the Van Roosbroeck equa-
tions are generally not trivial to obtain. Convergence of
the solution is often critically related to a proper choice
of grid, which already implies a fair knowledge in advance
on the expected solution. Luckily, for the simulation of
large volume germanium detectors for gamma-ray detec-
tion, several approximations can be applied, which sim-
plify the problem drastically.

2.1 Delta interactions

Radiation interacts with the active detector material by
creating electron hole pairs. Depending on the type and
the energy of the radiation the volume of the created
charge cloud changes. For example a single interaction of a
1MeV γ-ray in germanium knocks out fast electrons that
loose their energy by creating electron-hole pairs resulting
in a charge cloud with a radius of 0.5mm [23]. For γ-ray
energies above 250 keV, independent of the initial gamma-
ray energy, the initial energy will be statistically broken up
in energy deposits of 100 to 250 keV due to Compton scat-
tering [17]. This energy interval is defined by the region
where the Compton cross section is taking over from the
photo absorption. The range of a 100 keV photo-electron
in germanium is only 44μm [27]. Even in the statistically
unlikely event of a 1MeV photo absorption, the range of
the 1MeV photo electron is still only 1.2mm, which is
still less but comparable to the achievable position resolu-
tion. Thus all interactions by γ radiation can typically be
considered as point like interactions, as the range of the
electrons cannot be resolved.

2.2 Plasma erosion time

However, a partial shielding from the external field occurs
in the detector immediately after the creation of electron
hole pairs, that causes a tiny time delay required to sep-
arate the electrons and holes. This shielding effect signifi-
cantly affects the PSA for particle identification in silicon
detectors [28]. It roughly scales with the stopping power
along the particle track and is inverse proportional to the
external applied field. In silicon particle detectors, the ion-
ization density along particle tracks is so high that partial
shielding from the external field occurs. As a consequence
an increase in the rise time is observed due to the addi-
tional time required to separate electrons and holes from
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the initial plasma. Typical values for the plasma erosion
time τpl are 1–3 ns for alpha particles and 2–5 ns for heavy
ions [29]. The plasma erosion time scales proportional to
the square root of the stopping power along the parti-
cle track, and inverse proportional to the external applied
field E0 [28]:

τpl ∝
1

E0
·
√

dE

dx
. (1)

Although the quoted time constants are already small
compared to the typical collection times of several 100 ns
in large volume HPGe detectors, the effect will be even
more reduced considering the stopping power of photo-
electrons in germanium is about two orders of magnitude
smaller than for alpha particles at 100 keV. From this we
conclude it should be safe to neglect plasma erosion times.

2.3 Diffusion

Under action of diffusion, initial delta distributions will
be transformed into a Gaussian distribution of size

σ =
√

2Dt. (2)

The diffusion coefficient for electrons and holes at LN2
temperatures in germanium [30] is less than D < 300 cm2/
s. Typically collection times in an AGATA detector will
not surpass 0.6μs. This gives an upper limit of σmax <
0.2mm. The image charges induced in each electrode by
such Gaussian profiles will not differ substantially from
the image charges induced from a delta distribution. Dif-
fusion effects are therefore neglected in ADL. Exceptions
exist when the charge collection is happening in the vicin-
ity of a segmentation border. The gap between segments
has been measured to vary between 0.09mm and 0.72mm
on AGATA detectors [31]. Diffusion should be included to
properly describe the charge sharing between both elec-
trodes in these cases.

2.4 Quasi-static field approximation

In all our calculations, the finite speed of light is neglected,
such that image charges at electrodes in the detector are
created instantaneously in response to charges created in
the bulk of the detector. At any point in time the detec-
tor is therefore considered to be in an electrostatic equi-
librium. A sufficient condition for this to be true is that
the time required for light to cross the detector volume
is negligible compared to the timing accuracy required in
the calculation. The quasi-static approximation is readily
assumed in the Van Roosbroeck equations, and is, further,
also a prerequisite for the Ramo theorem (discussed fur-
ther in the text) to be valid. Furthermore, it is assumed
that the extra field generated by the charges created by
the gamma radiation is negligible compared to the exter-
nal applied collection field.

In summary, electrons and holes created by γ radiation
in large volume germanium detectors are approximated

as traveling independently in a fixed applied field, and
without appreciable diffusion, which represents a serious
reduction in complication.

3 Ingredients of signal calculation

According to the introduced approximations the require-
ments for numerical signal calculation are separable: i)
Calculation of the fixed electric field in the reverse biased
detector. ii) The mobility of electrons and holes are needed
to calculate their respective trajectories under action of
the external field. iii) Calculation of the instantaneously
induced image charge in any electrode of the detector as a
function of the positions of free electrons and holes in the
depleted region of the detector. iv) The different inputs
(potentials, mobility, mirror charges, response functions)
have to be generated and combined for the final calcu-
lation of the electric signals in the detector. The various
parts are introduced and explained in the following sub-
sections.

3.1 Electrical field

First the electrical field inside the detector has to be cal-
culated. Depending on the geometry of the detector, this
is done analytically or numerically. An analytical example
is the true coaxial detector1 which resembles the AGATA
detector to a major fraction. The Possion equation,

Δφ = −ρ

ε
, (3)

in cylindrical coordinates becomes

d2φ

dr2
+

1
r

dφ

dr
= −ρ

ε
.

The core electrode of a true coaxial detector defines the
inner radius r1 and the outer electrode the outer radius r2.
The boundary condition is the applied voltage V between
the two electrodes φ(r2)−φ(r1) = V . Solving the equation
for E(r) = −dφ

dr results in

−E(r) = − ρ

2ε
+

V +
(

ρ
4ε

)
(r2

2 − r2
1)

r ln r2
r1

,

assuming the space charge as constant.
The solution to the Poisson equation for a more com-

plex geometry is obtained numerically by a finite differ-
encing technique on a cubic grid. The cubic grid was cho-
sen as it fits well with most geometries and has some
non-negligible advantages compared to irregular meshes.
It simplifies drastically the equations after discretization,
which in addition results in more numerical stable solvers.
The structured grid allows for a fast lookup and interpo-
lation of the values compared to irregular meshes.

1 See, for example, [29] page 422.
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Homogeneous Neumann boundary conditions are ap-
plied to the array boundaries. The potentials have no gra-
dient component tangential to the array boundaries. The
homogeneous boundary condition is typically also used
for the passivated layer on the backside of the AGATA
crystals. However, this is a convenient approximation. The
correct boundary equation for passivated areas is given by:

n · ε0(ε1E1 − ε2E2) = ρs, (4)

with n, a local unit vector normal to the surface. E1, ε0ε1
is the field and the permittivity near the boundary on
the inside of the detector. E2, ε0ε2 are similar quanti-
ties just outside the detector. The boundary condition
thus relates the field component normal to the detector
boundary surface to the field outside the detector, and an
influence due to the encapsulation exists. Moreover, pas-
sivation layers possess a surface charge density ρs. This
surface charge density on the passivation layer is difficult
to be controlled during manufacturing, and is very tem-
perature dependent [32]. Details of the passivation layer
(geometrical size, thickness and charge density) are not
available from the manufacturer2 after encapsulation of
the HPGe crystal.

For these reasons, the passivated surface is approxi-
mated by a homogeneous Neumann condition:

n · E1 = 0. (5)

Under this approximation, small deviations between simu-
lation and experiment are expected for example in the rise
time profiles. This was observed as a result of an 241Am
source scan where the cylindrical surface at about 1 cm
from the back of the passivated layer was irradiated with
very low energy γ-rays (for details see [15]). The mobility
at the passivated surface boundaries is known to be much
below the bulk mobility [33], also enhanced trapping and
diffusion is expected to play a significant role for the signal
formation. Fortunately this behavior is limited to the very
back of the long Ge crystal and only a minor fraction of
the deposited γ-ray energies are affected by these effects.

3.2 Charge carrier mobility models

In contrast to planar detectors, the anisotropic behavior of
the moving charge carriers is of high importance in large
coaxial detectors. The field orientation can take any di-
rection with respect to the crystal orientation. Differences
in mobility between fields along different crystallographic
axes differ up to about 30% in the high field regime. A
correct description of the mobility is therefore key to a
precision simulation of HPGe detectors.

Rise time measurements [34] are performed to char-
acterize the crystal orientation of the detector. The ori-
entation of the asymmetric AGATA crystals were mea-
sured [34]. The method is based on the use of a collimated
400 kBq 241Am source emitting 60 keV γ-rays in combi-
nation with a small lead collimator of 1.5mm radius and

2 CANBERRA Industries Inc.

0°

Experimental data
Fit

 1
50

 

 2
00

 2
50

60°120°

180°

240°

Rise Time [ns]

Fig. 1. Aligned masks for scanning the crystal axis (left) and
rise times depending on the angular position of the collimator
for the asymmetric AGATA detector B002 (right).

1 cm length. The low energy γ-rays deposit their energy
within a few millimetres of the active detector material.
The created holes are collected immediately and only the
drifting electrons form the signal.

The crystal is scanned from the front over a circle with
a fixed radius of 2.35 cm. The differences in rise time be-
tween different angles result mainly from the crystal inter-
nal structure. The impact of the hexagonal shape of the
crystals is reduced. A mask, see left picture in fig. 1, indi-
cating 32 different scanning angles was placed at the front
face of the detector. The mask was aligned by request-
ing that the count rates of two neighbouring segments are
equal when the collimated source is placed on the corre-
sponding segmentation line and that at the centre of the
mask all front segments showed nearly equal count rates.
The data acquisition recorded the energy and the full trace
signals of every event. In the analysis the signals were fil-
tered for total energy deposition and an average trace was
build for every scan position. An example for the resulting
10% to 90% rise time is shown in the right plot of fig. 1
for the AGATA detector B002. The applied fit function is

T 90
10 (θ) = A · (1 + R4 · cos(4 · (θ − θ4)))

·(1 + R2 · cos(2 · (θ − θ2))),

with A, R4, R2, θ4 and θ2 as fit parameters. The largest
contribution comes from the second factor that models the
4 fold symmetry of the anisotropic mobility. θ4 describes
the crystal orientation. The R2 term corrects for small
observed deviations of the 4 fold symmetry caused by the
asymmetric shape of the detector. The results show clearly
the orientation of the axis. We observed this orientation
to be the same for all detectors.

Both electrons and holes move fastest in the direction
of the crystallographic 〈100〉 axis (near 45◦ - see right
plot of fig. 1). Moreover, this asymmetry in the drift ve-
locity causes components in the drift velocity tangential
to the applied field. The orientation of these tangential
components is always oriented towards the nearest 〈100〉
axis. However, for symmetry reasons, when the field is
applied in the direction of a crystallographic symmetry
axis, these components vanish. For the required mobility
as function of field strength, full three dimensional mo-
bility models were developed both for electrons [35] and
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holes [36]. These models are specific to mobility in germa-
nium near liquid nitrogen temperature (77K).

3.3 Mirror charges

Once the trajectories of all free charges in the detector are
calculated in function of the time, the induced signals in
each of the electrodes can be determined. Hereto one cal-
culates the weighting potential for each of the electrodes
of interest, for every position in the sensitive volume of
the detector. By definition, this weighting potential φi(x)
equals the induced charge Qind in electrode i for a unit of
charge placed at position x in the detector. For a charge
q at this position, we therefore get, by definition,

Qind,i = −qφi(x). (6)

The Ramo theorem [37] provides a very attractive so-
lution to the problem of calculating these weighting po-
tentials. It assumes that all electrodes are kept at fixed
potential, such that in a small AC signal perturbation
approach, these electrodes can be considered grounded.
Under these circumstances, the weighting potentials are
obtained as solution to the Laplace equation:

∇2φi(x) = 0 φi|Sj = δi,j . (7)

The boundary conditions to this problem can be readily
extracted from the definition: If a charge is closely posi-
tioned to the electrode with surface Si, the total of induced
charge in that electrode will be Qind = −q, or the weight-
ing potential at electrode i should take the homogeneous
Dirichelet condition Φi|Si = 1. If, on the contrary, the
charge q is placed close to another electrode j �= i, then
the total image charge will be induced in electrode j. This
has as consequence that all other electrodes will see no net
charge in the detector as the charge q is totally screened
by the image charge. Therefore the boundary condition
for any other electrode j �= i should take the homoge-
neous dirichelet condition Φi|Sj = 0. This explains the
use of the delta function in eq. (7).

In this picture the time evolution of the induced
charge, and thus the integral of the current flown into
this electrode is given simply by the charge weighted sum
of the weighting potential evaluated at the momentary
position of the free charges:

Qind,i(t) = −Σqqφi(xq(t)). (8)

By differentiation of eq. (8) it can be proven that the in-
duced current by the movement of charge q is given by

Iind,i = −qvd · ∇φi(x), (9)

with vd the momentary drift velocity of the charge q.
The inverted gradient of the weighting potential is called
weighting field. Within ADL, eq. (8) is preferred over
eq. (9) in the calculation of the induced signals, as usually
charge sensitive preamplifiers are used. Moreover, even in
case current sensitive preamplifiers are used, this method

is preferred, since the evaluation of the gradient in eq. (9)
is introducing unnecessary calculation errors in the simu-
lation.

It has been proven [38] that the weighting potentials
are not affected by the possible presence of space charge in
the medium. Hence the right-hand side of eq. (7) is zero.
This can also be simply argued: the image charges gener-
ated to deplete the space charge were generated while bias-
ing the detector, and therefore do not need consideration
in the small signal AC equivalent scheme which describes
the perturbation of the steady state of the detector.

It was silently assumed that the detector medium was
uniform. In case different materials are used, the Ramo
theorem will need modification. If furthermore resistive
materials are used (for instance the detector is not fully
depleted), then the modified equation to solve is [39]

∇(ε(x) + σ(x)/s)∇φi(x, s) = 0, (10)

where the ε and σ represent the position-dependent per-
mittivity and conductivity of the detector medium. The
parameter s is a complex frequency as used in the La-
place transform. Upon inverse Laplace transformation, the
weighting potential becomes now time dependent.

3.4 Electronic response and crosstalk

The charge signal as calculated using the Ramo theorem,
will need convolution with a realistic response function of
the acquisition electronics. The response function of the
preamp can usually be measured by injection of a clean
fast rectangular pulse in the preamplifiers pulser input. By
using eq. (8) rather than eq. (9), we took already the time
integration into account, such that we only have to convo-
lute with the time derivative of the measured preamplifier
response to obtain realistic signals.

However, since all channels in a highly segmented de-
tector are not grounded, but connected to a preamplifier,
the ideal Ramo currents, as described by eq. (9), will not
strictly apply and needs modification. This effect is on the
origin of fundamental cross talk in segmented detectors
and can be described by an extension to the Ramo the-
ory [38]. This model was worked out in the particular case
of AGATA detectors [40], and found in good agreement
with experimental results.

For AGATA detectors, the crosstalk has been observed
to contribute two types: the proportional crosstalk, which
creates a crosstalk signal in neighboring electrodes propor-
tional to the capacities between the electrodes involved.
This type of crosstalk can be described by assuming the
preamplifier acts at low frequencies as a large (Miller
equivalent) capacitance on the collecting electrode. Ac-
curate routines were developed to measure and correct for
this type of crosstalk within AGATA [41].

Proportional crosstalk in AGATA detectors creates
additional contributions to the charge carrier signals in
neighboring electrodes which is proportional to the time
derivative of the driving signal. This type of crosstalk can
be described by the fact that at higher frequencies, the
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Fig. 2. Block diagram of the routines (green) and the input
(blue) for an ADL simulation.

input of the preamplifier starts acting as a resistor. Mea-
surement of derivative crosstalk in practice is oft very dif-
ficult as it is usually superposed on real transient signals.
Nevertheless, also this type of crosstalk is growing propor-
tional to the capacities between the electrodes involved,
and shows correlation with the proportional crosstalk [42].

4 AGATA Detector Library

The AGATA Detector Library is written in the computer
language C. It is used for realistic simulations of semi-
conductor detectors in nuclear physics in general. In the
following discussions the focus concentrates on highly seg-
mented HPGe coaxial detectors, although many points
can be transferred to different geometries or semiconduc-
tor materials.

4.1 Layout of the ADL software

In fig. 2 a block diagram of the ADL is shown. The rou-
tines are colored in green and the user provided input is
colored blue. The main routine called Calculate Traces
consists of three subroutines and takes the interaction po-
sition as input. The first subroutine calculates the path of
the charge carriers through the detector material for ev-
ery time step. It needs the electrical field and a mobility
model of the charge carriers as an input. The second sub-
routine calculates for every time step the induced charges
in all electrodes. It needs the weighting potentials to do
this. The last subroutine convolutes the signal with prede-
fined functions. The routines and their input parameters
will be described in detail within the next sections.

ADL intents to be flexible and extendable. The library
has a special registration of the routines and input param-
eters controlled by template files. An overview of the parts
of ADL is given in table 1.

4.2 Calculating the weighting potentials and the
electrical field

First the electrical field and the weighting potentials [43]
have to be calculated. The ADL library provides basic ge-
ometries like the true coaxial or a planar detector. More

Table 1. Components of the ADL software which is controlled
by template files.

Parts Description

ADL Main setup file

CONVOLUTION Convolution of transfer function

DRIFT Charge carrier mobility models

EVENT Basic event information

FIELDS Geometries, weighting

and electrical fields

READWRITE Input and output

TIME Timing filter settings

TRACES Calculation of traces

TRAPPING Trapping sensitivities

and path length

complex geometries are provided as SIMION [44] poten-
tial arrays. The user can easily add new geometries as
SIMION potential arrays or implement new routines to
add different formats.

The weighting potentials are determined by a 3D Pois-
son solver which is implemented in the library to calculate
the fields. It is based on the established technique of suc-
cessive over relaxation [45]. For this reason the detector
is split into many small cubes called voxels. Each voxel is
either an electrode or active detector material. To calcu-
late the weighing potential for one electrode, this electrode
is set to 1V and all other electrodes are set to 0V. The
solver now iterates over all voxels. If the voxel is active
material, it takes the average of the values of the 6 neigh-
bouring voxels as its new value plus some over relaxation
parameter for faster convergence. If the voxel is an elec-
trode, it is not changed. The value change is monitored
and if it becomes small enough the calculation stops. The
field solutions are stored in a format compatible with the
commercial code SIMION.

In order to check the reliability of the numerical re-
sults, the numerical solution of the solver was compared
to the analytic one. The comparison shows only small de-
viations in the per mille range at the boundaries.

Different parameters can be adjusted in the template
files depending on the type of input. For the analytical
solvable geometries the applied high voltage, the impurity
concentration, geometric details and the relative permit-
tivity of the medium are set. For the SIMION files the
different weighting potentials for all electrodes and the
contribution of the impurity concentration must be given
as file input.

For all AGATA geometries SIMION files were cal-
culated and are available from the IKP AGATA web-
page [46]. To create a full simulation of an AGATA detec-
tor the weighting potential for all 36 segment and the core
electrode have to be calculated. An example of a weighting
potential of detector A001 as calculated by the ADL rou-
tines is shown in fig. 3. On the top panel, a slice through
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Fig. 3. Weighting potentials for the core electrode (top) and
segment electrode A4 (bottom) of detector A001. The slices are
taken at 40.5 mm from the front of the detector. The complete
region outside the active germanium material are marked as
electrodes with a fix potential of 1V. The units of the z-scale
are Volt.

the weighting potential of the sixfold segmented detector
in the coaxial part of the detector is depicted. On the
bottom plot, the weighing potential of segment A4 is pre-
sented. From the weighting potential values on the bound-
ary between the nearest neighbour and second nearest
neighbour of A4 it can be seen that the amplitude of tran-
sient signals will be limited to 2–3% of the hit segment sig-
nal for second nearest neighbours. The plot demonstrates
that nearest neighbouring segments contribute predomi-
nantly to a detectable amplitude in transient signals.

The electrical field is the weighting potential of the
core electrode scaled by the applied bias voltage plus the
field created by the space charge distribution. The space
charge is the uncompensated net impurity charge density
of the germanium material. The contribution of the space
charge to the electrical field is the calculated electrical
field of the distribution for the boundary electrodes set to
0V.

Table 2. Parameters for the mobility of electrons and holes
in germanium according to the parametrization given in [15]
(see eq. (7)). The inter valley scattering rate for the electron
mobility is the second-order expansion of eq. (8) in [36].

Electron mobility parameters

Mobility along 〈100〉 Inter valley scattering rate

E0 [V/cm] 507.7 E0 [V/cm] 1200

β 0.804 ν0 0.459

μ0 [cm2/V s] 37165 ν1 0.0294

μn [cm2/V s] −145 ν2 0.000054

Hole mobility parameters

Mobility along 〈100〉 Mobility along 〈111〉
E0 [V/cm] 181.9 E0 [V/cm] 143.9

β 0.735 β 0.749

μ [cm2/V s] 62934 μ [cm2/V s] 62383

For the simulations of the AGATA detectors the im-
purity profiles provided by the manufacturer are used. As
it is possible to measure the impurity concentration of en-
capsulated germanium crystals [47–49], the information
of the manufacturer were verified by independent pulser
measurements for the first asymmetric AGATA detector
systems [50].

4.3 Calculation of pulse shapes

Radiation interacts within the active detector material by
creating electron-hole pairs. For the simulation the inter-
action positions and the deposited energies are given as an
input. A simple event structure is implemented that allows
to set the maximum number of simultaneous interactions
per event, the number of electrodes, the number of time
steps and the time resolution (step size). Once the charges
are created inside the active Ge material, they travel along
the electric field of the reversed biased semiconductor de-
tector and induce a signal in the electrodes. The quasi-
static field approximation is applied, such that the induced
signals at all electrodes of the detector are instantaneously
created. The time to collect all charge carriers is depending
on the geometry of the detector, the applied voltage and
the impurity concentration of the semiconductor material.
The two charge carriers have different mobilities resulting
in different collection times for electrons and holes. Dif-
ferent models are provided by the library for the mobility.
A basic model assumes a constant mobility. Another im-
plemented model, see [29] p. 434, assumes an empirical
dependence of the drift velocities with the electrical field
strength. However electron and hole mobilities in germa-
nium are not isotropic, but depend on the orientation of
the crystallographic axis of the cubic centred germanium
crystal structure with respect to the electrical field. Re-
cent publications [15, 35, 36] show, that such anisotropic
treatment of electron and hole mobilities is crucial in non-
planar coaxial detectors. A realistic model of the mobility
inside germanium crystals is implemented. The parame-
ters described in [15,36] are listed in table 2.
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The routines that calculate the path of the charge car-
riers along the electrical field are based on the 5th-order
Runge Kutta integration method with adaptive step size
control (from [45] chapt. 16.2, p. 714). The induced signals
for every electrode of the detector are calculated depend-
ing on the drift of the electrons and holes to the elec-
trodes. For every time step and for each interaction the
weighting field evaluated at the position of the electrons
is subtracted from the weighting field evaluated at the po-
sition of the holes. These differences are multiplied by the
charge produced at the individual interaction. The sum of
all interactions results in the signal set for the given event.

Finally these traces are convoluted with realistic be-
haviour of the detector system. The different polarity of
the preamplifiers are set up as a convolution function. The
transfer function of the preamplifier or the cross talk of
segmented crystals could be taken into account. Actually
in the online analysis of AGATA these functions are folded
in the signals of the library, as they could vary for different
detector and digitizer configurations.

Additionally the library provides routines to calculate
the trapping sensitivities relevant for neutron damage cor-
rection as described in [51]. The trapping sensitivities are
added to the PSA bases and are used in the neutron dam-
age correction of the AGATA online analysis.

4.4 Building AGATA PSA bases

In the following example a simulation for the detector
A001 is described in more detail. The computer program
that calculates a PSA base for AGATA iterates over the
active detector volume with a defined grid size. In AGATA
a 3D grid size of 2mm is used. For an A type detector
47156 positions inside the detector volume are calculated.
The applied high voltage for the detector is 5000V. To cal-
culate the charge collection process the anisotropic mobil-
ity model is used including the measured axis orientation.
Single interactions are calculated with an energy deposi-
tion of 1 keV. The trace length is set to 600 ns with a 5 ns
step width. In addition to the trace signals the trapping
sensitivities for the online neutron damage correction are
calculated for every position.

In fig. 4 the resulting simulated traces for AGATA de-
tector A001 are summarized. On the top plot, the core
signal for different interaction radii are shown. The effect
of the different mobilities of electrons and holes is clearly
visible. For small radii the faster electrons are collected
immediately while the slower holes still have to drift to
the segment electrode. The shortest rise time occurs at
an intermediate position, where the collection process for
both signals is equal. Then for larger radii the time of the
electrons to be collected is longer than for the holes, as
they have to drift to the core electrode. On the bottom
plot of fig. 4 the transient signals in a segment next to the
hit segment are shown. Depending on the distance of the
interaction to the non hit electrode, the amplitude of the
transient signal changes.

The calculated PSA base sets are used in the AGATA
online and offline analysis. In fig. 5 the best match of a

Fig. 4. Simulated traces for an AGATA detector. Top shows
the core signal for different radii and bottom shows the tran-
sient signals induced in a non hit neighbouring segment. Colour
code as indicated in the inset of the bottom graph. The slice
is at 40.25 mm from the front of the detector.

random interaction scaled to the right energy is compared
to the experimental data. The plot shows a so called super
trace. The individual trace of all segment electrodes and
the core electrode with a length of 600 ns are plotted after
each other. The different electrode sections are marked by
the axis label. In the bottom plot the absolute difference
between the traces is shown.

All calculated PSA bases for the AGATA detectors are
available through the following AGATA web page [46].

4.5 Position resolution obtained with ADL bases

For AGATA the PSA runs as part of the data acquisition
process already online. For this purpose a set of fast PSA
algorithms, such as grid search [2], genetic algorithms [3],
wavelet decomposition [52], a matrix method [4] and a
particle swarm algorithm [5], were developed. All algo-
rithms compare the recorded pulses with a database that
holds signal pulses of defined positions in the detector.
The signal library includes all signal traces over a 2mm
grid. Before the search algorithm is applied the distortion
by the electronics is taken care of by folding the transfer
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Fig. 5. The best match determined by the grid search algorithm of a random interaction scaled to the right energy compared
to experimental data. The horizontal axis is split in 37 sections, each containing a 600 ns trace of the corresponding electrode.
Top plot is scaled to full energy deposition. Middle plot is zoomed to emphasize the transient signals. Bottom plot shows the
absolute difference between simulation and measurement.

function of the acquisition electronics and the differential
crosstalk in the signals of the library.

Up to now the quality of the ADL signal basis is sur-
veyed by several in-beam and source measurements which
are sensitive to the position resolution deduced from the
signal shapes. The final position resolution depends crit-
ically on the quality of the calculated signal bases. To
obtain an experimental position resolution different tech-
niques were employed and up to now a final resolution be-
low 5mm (FWHM) is obtained for a gamma energy above
1MeV. The technique described in [53] compares a Monte
Carlo simulations of the detector response with an exper-
iment performed at the IKP Cologne. In the experiment a
48Ti beam with 100MeV impinged on a deuterated tita-
nium target. The reaction 48Ti(d,p)49Ti was investigated
in inverse kinematics. The γ-rays were measured with the
first symmetric AGATA triple. To reconstruct the veloc-
ity vector of the scattered nucleus a double-sided silicon
strip detector (DSSSD) was used to detect the emitted
proton. The performance of the Doppler correction was
compared to simulations taking into account the different
contributions that cause a broadening of the peak. The
final position resolution is of the order of 5mm at an en-
ergy of 1382 keV. This first result was already close to the
design performance of 4mm for AGATA and was clearly
improved in the following years.

Another technique employs the imaging capability of
AGATA to determine the position resolution of a single
AGATA detector [54] and assesses a mean position reso-
lution of 5mm in an energy range from 300 keV to 1MeV.

A third approach uses the annihilation of the positron
emitted by a 22Na source to extract the position resolu-
tion [55]. As the two γ-rays emitted by the annihilation
process have opposite directions two AGATA detectors at
different locations were used to perform a source mea-
surement. Based on the comparison of Monte Carlo simu-
lations and experimental data different methods were de-
veloped to measure mean and individual position resolu-
tions. A position resolution of 3.5mm was determined for
an energy of 511 keV.

A recent publication is based on the Doppler broad-
ening method [20]. The experiment was one of the first
commissioning experiments performed with the AGATA
setup at LNL. The results show that the FWHM of the
interaction position resolution varies nearly linearly as a
function of γ-ray energy. For a low γ-ray energy of 250 keV
the position resolution is 8.5mm. However the value is im-
proving at higher energies and reaches 4mm at 1.5MeV;
this value stays constant up to 4MeV.

In the near future a detailed comparison between a
set of measured position-dependent pulses and the ADL
calculations will allow a refined and direct inspection.
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5 Summary

New detector arrays for γ-ray spectroscopy are based on
segmented HPGe crystals and implement the new method
of γ-ray tracking. For this purpose PSA algorithms are
employed to obtain the needed position information of
the individual γ-ray interactions. PSA algorithms com-
pare experimental and pre-determined data sets. ADL is
a computer code used for computation of the vast amount
of position-dependent pulses for such libraries. The basic
concepts of the signal calculations are presented includ-
ing experimental details on the measuring of the input
parameters like the axis orientation of an AGATA de-
tector. Meaningful approximations are exploited and dis-
cussed in this work. The layout of the program package
and the different steps needed to calculate a PSA data
base are described in detail. The achieved results of the
experimentally determined position resolution unambigu-
ously demonstrate that ADL is successfully utilized for
spectroscopic investigations which are performed with the
AGATA spectrometer.

This research was supported by the German BMBF under
Grants 06K-167, 06KY205I and 05P12PKFNE TP4. AGATA
was supported by the European funding bodies and the EU
Contract RII3-CT-2004-506065.
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