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Abstract. Graphics processing units (GPU) are currently used as a cost-effective platform for computer
simulations and big-data processing. Large scale applications require that multiple GPUs work together
but the efficiency obtained with cluster of GPUs is, at times, sub-optimal because the GPU features are
not exploited at their best. We describe how it is possible to achieve an excellent efficiency for applications
in statistical mechanics, particle dynamics and networks analysis by using suitable memory access patterns
and mechanisms like CUDA streams, profiling tools, etc. Similar concepts and techniques may be applied
also to other problems like the solution of Partial Differential Equations.

1 Introduction

In the past years, graphics processing units (GPU) have
established themselves as a viable alternative to tradi-
tional platforms for high performance computing. A num-
ber of scientific codes have a GPU version, most of the
times implemented by using NVIDIA compute unified de-
vice architecture (CUDA) C and Fortran bindings. How-
ever many interesting problems simply do not fit in the
memory available on a single GPU so large scale simu-
lations or simulations whose execution time must be re-
duced as much as possible (i.e., pseudo real-time simula-
tions or high-frequency data processing) require more than
one GPU working concurrently. Multi-GPU programming
can be carried out in different ways but the most com-
mon approach is to combine CUDA for programming the
single GPU and MPI to exchange data among the GPUs
involved in the computation. In other words, a hybrid par-
allel programming model whose efficiency depends on the
ability of the developer to exploit at its best the huge
computing power of the single GPU and to overlap com-
putation and communication with a proper combination of
problem decomposition, data structures, algorithms, and
technology exploitation. In the present paper we describe,
through some representative examples, how it is possibile
to achieve excellent scalability using multiple GPUs. We
assume a working knowledge of CUDA and MPI.

The paper is organized as follows: Section 2 provides
a general introduction to multi-GPU programming and
shows how to reduce the communication overhead; Sec-
tion 3 presents few selected applications and techniques
that can be of interest for researchers who need to run
large scale simulations on clusters of GPUs. Section 4 con-
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Fig. 1. Direct memory copy between GPUs enabled since
CUDA 4.0.

cludes the paper with a look to future perspectives of high
performance GPU-based parallel processing.

2 Effective multi-GPU programming

Starting with CUDA version 4.0, NVIDIA GPUs can, un-
der some specific conditions, move data to/from the mem-
ory of another GPU (see Fig. 1). Basically the mechanism,
named in CUDA as peer-to-peer, requires that:

– source and target GPUs are connected to the same
PCI-e root complex;

– both source and target GPU are, at least, of Fermi
generation.

With the peer-to-peer support, the copy operation does
not need to be staged through the CPU. However, in gen-
eral, GPUs cannot exchange data directly without the
support of the hosting CPU. If the GPUs that need to
communicate are in two distinct systems, then the most
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used procedure is:

1. the sender GPU uploads data to its controlling CPU
(a device to host memory copy operation in CUDA
jargon);

2. sender CPU sends data to the CPU controlling the
target GPU with MPI. MPI guarantees portability and
efficiency of the inter-systems communication;

3. target CPU downloads data to the target GPU (host
to device memory copy).

It is apparent that the memory copy operations intro-
duce an overhead and that if the GPUs remain idle dur-
ing both the memory copy operations and the inter-CPU
data exchange, the efficiency of a multi-GPU configura-
tion may be seriously impaired. In general, it is desirable
to carry out concurrently computation and communica-
tion (regardless of the availability of GPUs) but, most of
the times, even if MPI supports a non-blocking commu-
nication mode that can be interleaved with other useful
work, the actual overlap is very limited (if any).

However, CUDA provides a very good support for
concurrency within an application through its execution
streams. In CUDA, a stream is a sequence of operations
that execute on the GPU in the order in which they are
issued by the CPU. While operations within a stream are
guaranteed to execute in the prescribed order, operations
in different streams can be interleaved and, when possi-
ble, they can even run concurrently. The amount of execu-
tion overlap between two streams depends on the order in
which the requests are issued to each stream and on the
availability of resources for the execution (further infor-
mation can be found in Ref. [1]). It is possible to overlap:

– computations on GPU (depending on the availability
of resources);

– memory copy operations (from/to CPU) and compu-
tations on GPU;

– CPU operations (including communication) and GPU
computations.

For the sake of simplicity, let us assume that the GPU
computations can be divided somehow in two parts: the
first one deals with data that need to exchanged with other
GPUs (let us call them boundaries) whereas the second
one deals with data that are completely local to the GPU
(let us call them bulk). This sub-division is pretty natural
using domain decomposition techniques but it can also
be applied to other situations (e.g., networks or graph
partitioning).

Two streams are required to achieve overlap between
communication and computation: one stream is assigned
to the bulk and one to the boundaries. Then the following
scheme can be applied:

1. update the boundaries by using the first stream;
2. first stream:

– copy data in the boundaries from the GPU to the
CPU;

– exchange data between nodes by using MPI;
– copy data in the boundaries from the CPU to the

GPU;

Fig. 2. Overlap between computation and communication us-
ing two streams. D2H is the device to host memory copy. H2D
is the host to device memory copy.

3. second stream:
– update the bulk;

4. start a new iteration.

The overlap, shown in Figure 2, is between the exchange of
data within the boundaries (carried out by the first stream
and the CPU) and the update of the bulk (carried out by
the second stream). The CPU acts as a data-exchange-
coprocessor of the GPU. The communication overhead can
be completely hidden under the condition that the com-
putations in the bulk require more time than the data
exchange.

2.1 GPU-aware MPI implementations

CUDA 4.0 introduced a new feature called Unified Vir-
tual Addressing, or UVA, which maps all CPU and GPU
memories in the system into a single virtual address space.
This allows CUDA applications and libraries to determine
the location of a variable based on the value of its virtual
address. This feature made possible the development of
GPU-aware MPI implementations in which MPI functions
are able to also accept pointers to GPU memory. There
are several GPU-aware MPI implementations available:
MVAPICH21, OpenMPI2, CRAY MPI and IBM Platform
MPI.

The ability to pass GPU pointers directly to MPI func-
tions may simplify the programming effort since, with
GPU-aware MPI, all the complexity of the CPU-GPU
data exchange is hidden inside the library and only MPI
calls are required. It also allows applications to auto-
matically benefit from optimizations possible from GPU
Direct3.

GPU Direct is a name used to refer to several spe-
cific technologies (from peer to peer to GPU RDMA). In
the context of MPI the GPU Direct technologies cover all
kinds of inter-rank communication: intra-node, inter-node,
and RDMA inter-node communication.

Every GPU-aware MPI implementation has different
capabilities, and being a rapidly evolving technology, it
is difficult to describe what it is available in a particular

1 http://mvapich.cse.ohio-state.edu/overview/

mvapich2/
2 http://www.open-mpi.org/faq/?category=building#

build-cuda
3 http://devblogs.nvidia.com/parallelforall/

introduction-cuda-aware-mpi
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distribution. There are also dependencies on the partic-
ular hardware configuration (for example, peer to peer
only works if the two GPUs are under the same PCI-e
root complex, GPU Direct RDMA may require particular
Infiniband drivers and cards).

It is also difficult to estimate the performance gains
obtainable from using GPU-aware MPI instead of a tra-
ditional approach. Glaser et al. [2] compared the perfor-
mance of a traditional approach versus a GPU-aware MPI
(with GPU Direct both enabled and disabled) and showed
that for single precision the traditional approach is always
faster then GPU aware MPI with GPU Direct disabled.
Once GPU Direct is enabled the gap is significantly re-
duced, bringing the two approaches on par. For double
precision, the GPU-aware MPI with GPU Direct is always
faster with gains up to 20%.

2.2 Advanced profiling

When porting an application to a cluster with GPUs, it
is important to be able to understand where the time is
spent on both the CPU and GPU sides. The standard pro-
filing tools in CUDA, nvprof and nvvp, are able to show
the GPU timeline but do not present CPU activity. The
NVIDIA Tools Extension (NVTX) is a C-based API to an-
notate the profiler time line with events and ranges and to
customize their appearance and assign names to resources
such as CPU threads and devices. The use is very sim-
ple, once the NVTX header file is included, the developer
needs to mark the region of interest with nvtxRangePush
and nvtxRangePop calls.

#include "nvToolsExt.h"
...
void init_host_data( int n, double * x )
{
nvtxRangePushA("init_host_data");
//initialize x on host
...
nvtxRangePop();

}
...

To eliminate profiling overhead during production runs
and to remove NVTX from release builds, it is possible to
use a set of macros that also allow full color and text
customization4.

During the runs, one or more MPI processes gener-
ate the traces that are later imported and visualized with
nvvp, the NVIDIA Visual Profiler. For example, in order
to generate the profiler traces for a run on 4 GPUs, where
each trace will have the host name (%.h) and the process
number (%p) appended to the name of the output file, it
is possible to use the following command:

mpirun -n 4 nvprof -o output_hitMPI.%h.%p
./hitMPI

4 http://devblogs.nvidia.com/parallelforall/

cuda-pro-tip-generate-custom-application-profile-

timelines-nvtx/

3 Examples of multi-GPU applications

In this section we present some examples of applications
that can take advantage of clusters of GPUs and provide
hints on how to best exploit the capabilities offered by
this computing platform. We start from simple, regular
computations and move to more complex applications.

3.1 Stencil computations and statistical mechanics
models

As a first example, we consider the simulation of the three-
dimensional Ising spin glass, a statistical mechanics model
defined on a cubic lattice by the Hamiltonian

H = −
∑

〈ik〉
Jik σiσk, (1)

where the σi ∈ {−1, +1} are the so-called spin variables,
the Jik ∈ {−1, +1} are coupling constants (representing
quenched disorder) randomly drawn according to a given
probability distribution P (Jik) and the sum

∑
〈ik〉 is re-

stricted to nearest neighbours. With a bimodal disorder
the probability distribution reads

P (Jik) =
1
2

[δK(Jik − 1) + δK(Jik + 1)] , (2)

where δK(a− b) = δab stands for the Kroneker delta. Such
a model describes, in three dimensions, a disordered and
frustrated magnetic system showing a glassy dynamics be-
low a finite critical temperature Tc = 1.1019(29). Spin
systems have been studied by using GPUs by several au-
thors [3–6]. Most Monte Carlo simulations of statistical
mechanics models, like the Ising spin glass, require a sten-
cil computation. Stencil computations are used to solve a
large number of important scientific computing problems
not only in Statistical Mechanics but also in partial dif-
ferential equations (PDE) and Lattice Boltzmann based
modeling. The computing kernels for stencil computations
use an outer-most time loop to make a large number of
sweeps over a multi-dimensional mesh. The value of the
model variables living on each node of the mesh is modified
at each iteration based on the values of the neighboring
nodes. In general stencil computations can be parallelized
(both on GPUs and standard CPUs) either by adopting
a checkboard decomposition of the mesh or by using a
double buffer to store old and new values of the variables.
Besides that, a domain decomposition allows for a fur-
ther level of parallelization by using more than one GPU.
Stencil computations usually involve only few neighbor-
ing nodes (e.g., in 3D, 6 for the simulation of the Ising
spin glass or 26 for the solution of most PDE). As a con-
sequence the boundaries that need to be exchanged are
small in size compared to the bulk and we can expect that
the computation in the bulk can hide completely the data
exchange even if the computation is pretty simple as it
happens to be in the case of the Ising spin glass. Appar-
ently, the lower bound on the number of MPI communi-
cations it is achieved by adopting a mesh decomposition
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Fig. 3. Domain decomposition along 1 direction.

Fig. 4. A depiction of the slicing procedure. Lighter cells are
the periodic ones.

along a single direction (e.g., along the z direction) so
that each GPU has to exchange boundary data only with
two other GPUs (see Fig. 3). Actually, it is possible to
reduce the number of communications by using a differ-
ent memory layout for the cubic stencil access pattern in
the checkerboard scheme. The sliced layout, recently pro-
posed in reference [7] works only with periodic boundary
conditions but it allows to achieve a faster memory access
and a higher cache efficiency. It is defined by taking sites
belonging to planes orthogonal to one of the diagonals
d = (±1,±1,±1). Then, each slice only contains sites of
one of the colours of the checkboard decomposition. In the
case of nearest neighbours interactions this means that in
each slice all sites are decoupled. At the end of the proce-
dure one ends up with a new cubic lattice, with periodic
boundary conditions, for which it is always possible to find
two opposite one-coloured surfaces. The slicing procedure
is depicted in Figure 4.

The method, which holds in an arbitrary number of
dimensions, has been shown to be rather robust with re-
spect to the usual checkerboard memory layout under vari-
ations of the memory load. Further details can be found
in reference [7].

The sliced memory layout makes possible, as shown
in reference [7], a reduction of about 20% of the time re-
quired for the update of a single spin with respect to the
classic checkboard partitioning scheme and performs bet-

ter also with respect to a very optimized scheme (based on
bitwise operations) that works only when the linear size
of the lattice is a power of two, whereas the sliced scheme
works for any linear size (provided that the lattice has pe-
riodic boundary conditions). However, here the intriguing
aspect is how the multi-GPU approach is modified when
the sliced memory layout is adopted. In the classic checker-
board memory layout each boundary is two-coloured so
that each process must communicate with two other dif-
ferent processes. In the sliced scheme what happens is that
each boundary is only one-coloured, by construction, so
that each process only needs to communicate with another
one. Of course, the total amount of transferred data is con-
served but the number of transaction requests is halved. In
Figure 5 we report a depiction of the communication pat-
tern with the sliced scheme. For problems that require a
domain decomposition among GPUs, this memory layout
represents a potential improvement to the overall perfor-
mance since the total latency of the communication halves
(the number of communications is divided by two).

The combination of a suitable memory access pattern
and the streams support to communication/computation
overlap allows to achieve, as shown in Figure 6, a pretty
good multi-GPU efficiency (defined as ηSC = T1

N×TN
where

T1 is the execution time on a single GPU and TN is the
execution time by using N GPUs) even for simulations
with a low computing intensity like those for the Ising
spin glass.

3.2 Particle dynamics in irregular domain
decompositions

We now move to describe the issues that arise in multi-
GPU programming when the simulation deals with an ir-
regular domain.

Many interesting physical systems are modeled by
means of microscopic particles interacting via a predefined
set of rules. In some cases the geometry in which the par-
ticles move is not relevant and thus the simulations could
be performed in box-shaped domains with periodic bound-
ary conditions. In other cases, however, it is interesting to
study the dynamics of the particles when their movement
is confined in domains with specific geometries. In hemo-
dynamics simulations, for example, particles resembling
red blood cells are simulated in spatial domains whose
geometries closely resemble those of blood vessels.

Large scale Particle Dynamics (PD) simulations can
easily involve the concurrent tracking of hundreds of mil-
lions of particles [8]. The memory and computing re-
sources required by those simulations are so high that
the only viable approach is to distribute the computations
among multiple GPUs. However, there are, at least, two
non-trivial problems related to the distribution: interdo-
main interactions and particles migration.

Hereafter we present a general method to perform ef-
ficiently interdomain interactions and particles migration
when parallelizing PD with irregular domain decomposi-
tions. This approach has been proved to be efficient on

http://www.epj.org
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GPUs [9] even if it has not been designed exclusively for
those architectures.

For the sake of generality, we consider a generic PD
model where the shape of particles is not relevant and in-
teractions are limited by a cutoff distance that is much
smaller than the linear sizes of the bounding box of the
subdomains assigned to each processor. Moreover, we as-
sume that the particles are evenly distributed inside the
domain (this latter assumption can be easily relaxed by
dividing the domain).

Fig. 7. Optimal partitioning for 1024 processors of an irreg-
ular domain representing a full coronary tree. Different colors
represent different subdomains.

3.2.1 Interdomain interactions

The general problem is to run, on a cluster of GPUs, a
large scale simulation in which the particles move in a
domain with an arbitrarily complex geometry. In order to
guarantee a good load balancing among the GPUs, the do-
main must be partitioned in subdomains with volumes as
similar as possible. Moreover, in order to limit the commu-
nication loads it is necessary to minimize the contact areas
between subdomains. High quality decompositions with
such features can be obtained by using graph partitioning
algorithms [10]. These solutions, however, produce subdo-
mains with irregular shapes and non-flat contact surfaces
that result in a non-trivial communication pattern. As an
example, Figure 7 shows a domain representing a coronary
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artery tree partitioned in 1024 subdomains with the PT-
SCOTCH software [11].

Irregular domain decompositions are not exclusively
employed for simulations in complex geometries. There are
a number of efforts to optimize load-balancing of PD simu-
lations in regular, box-shaped domains where particles are
not uniformly distributed. For example in reference [12],
subdomains represented with six tetrahedrons are allowed
to deform during the simulation to balance the number of
particles handled by the processors. Such approaches typ-
ically tile the simulation box with a choice of geometric
primitives that represent a trade-off between the level of
balancing and the complexity of the resulting communica-
tion pattern. In the scenario presently considered however,
domain decompositions at the bounding box level may not
be a viable option. It is not clear whether these approaches
can provide high quality results when partitioning highly
sparse, complex geometries for a high number of domains
(tens of thousands and more), especially for what concerns
both the size and the contact surfaces of the subdomains.

The computation of interdomain interactions requires
the processors to exchange all the particles having a dis-
tance less than the cutoff from neighboring subdomains.
The ideal solution would be to send to neighboring GPUs
only the particles that are close enough to the bound-
aries of their subdomain. However, given the irregular-
ities of contact surfaces, an exact identification of such
particles can be impractical. On the other hand, a rough
overestimation would result in an unacceptable commu-
nication overhead due to the exchange of non-interacting
particles. The technique hereafter presented allows to effi-
ciently identify a limited superset of the particles involved
in interdomain interactions and to perform selective trans-
fers of the particles based on the distance with target
subdomains.

The solution [9] relies on an additional decomposition
step performed on the subdomains. Each GPU tiles the
bounding box of its subdomain with cubic cells of side
equal to the interaction cutoff. The cells having empty
intersection with the subdomain are discarded with the
exception of those that are neighbors of cells intersecting
the contact surfaces with other subdomains. The remain-
ing cells are then grouped into three sets (internal, frontier
and external cells) that verify the following properties.

1. Every point of the subdomain is within either an in-
ternal or a frontier cell.

2. Internal cells contain only points of the subdomain at
distance greater than the cutoff distance from the sub-
domain boundary.

3. Frontier cells contain all the points of the subdomain
at distance less than or equal to the cutoff distance
from the subdomain boundary.

4. External cells contain only points outside the subdo-
main and, together with frontier cells, cover all the
external region at distance less than or equal to the
cutoff distance from the subdomain boundary.

Figure 8 illustrates an example of such decomposition ap-
plied to a simplified two-dimensional geometry. To each

Fig. 8. Tiling of a 2D domain in external cells (red), fron-
tier cells (yellow) and internal cells (green). The dashed line
represents the region within a cutoff distance from the domain
(solid line). The colored contours around frontier and external
cells represent the neighboring processors lists. The red line
encloses the cells at interacting distance only with processor 1,
the purple line those at interacting distance with both proces-
sors 1 and 2 and the blue one encloses the cells at interacting
distance only with processor 2.

cell are then assigned two indices:

– a global index obtained by linearizing the three-
dimensional coordinates of the tiling ck×Nj×Ni+cj×
Ni + ci (Ni,j,k and ci,j,k are, respectively, the number
of cells and the cell indices along the x, y and z axes);

– a local index encoding the cell group it belongs to and
its index inside the group.

As an example of local indexing, all the cells could be
numbered consecutively running on internal, frontier and
external cells and saving the first index for each set.

This decomposition requires to maintain the following
data structures:

– a cell array, containing all the index couples and sorted
by global index;

– a cell matrix, with a row for each cell containing point-
ers to the particles in that cell (the particles can be
stored in dedicated data structures in no particular
order);

– a connection matrix, with a row for each frontier and
external cell containing the list of neighboring proces-
sors that handle domains at interacting distance with
the cell.

The connection matrix is typically built using the infor-
mation about the subdomain interconnection returned by
the initial partitioning step.

The cell array is used to bin the particles in the corre-
sponding cells in O(log 2(#cells)) time. Given a particle
at position (px, py, pz) the global id (gid) of the cell that
contains it can be determined with:

gid =
⌊

pz

coff

⌋
× Nj × Ni +

⌊
py

coff

⌋
× Ni +

⌊
px

coff

⌋

the local id of the cell can be found by performing a binary
search of gid in the cell array. If the search fails, then the
particle is not positioned inside the subdomain.

http://www.epj.org
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Using this decomposition, interdomain interactions are
processed in the following way. Each processor first iden-
tifies and exchanges with neighboring processors all the
particles that could interact with the outside. Property 3
guarantees that all particles involved in interdomain in-
teractions are contained inside the set of frontier cells.
Thus the particles listed in the rows of the cell matrix
corresponding to frontier cells are sent to the neighboring
processors that are specified in the corresponding rows of
the connection matrix. In this way only a limited superset
of the particles that could interact with the outer region is
transferred. Moreover, data are transferred only to GPUs
in close proximity with the particles. This mechanism re-
duces dramatically the number of duplications within the
set of transmitted particles with respect to a multicast ap-
proach where all particles in the boundaries are sent to all
neighbors. Replication takes place only when more than
two subdomains are in touch. Particles located in those
regions are sent to more than one processor. On the re-
ceiving side, only the particles that could interact with the
inner region are considered. Given property 4, the received
particles to be retained are filtered depending on the cells
they are positioned into. All particles located inside either
external or frontier cells are kept and the others are dis-
carded. Finally, particles that are retained can be used to
compute interdomain interactions.

3.2.2 Particles migration

Particles migration can be handled following an approach
similar to the one used for interdomain interactions. After
particles positions are updated, all particles are binned
inside the cells they moved into. Particles that moved
outside of the GPU subdomain must be exchanged with
neighboring processors. Departing particles are found by
selecting those that moved into external cells (property 4)
and by selecting a subset of those that moved into frontier
cells. The identification of particles sitting in frontier cells
and moving to neighboring subdomains is carried out by
means of a membership test that allows to decide exactly
whether a particle lies inside or outside the subdomain.
While the implementation of this test strongly depends on
the particular representation of the subdomain (i.e. Carte-
sian mesh, finite elements, etc.) it is reasonable to assume
that it exists as a fundamental building block of any PD
simulation. Once the list of departing particles is built, a
selective transfer to neighboring domains is done by us-
ing the connection matrix. In this way, processors send
exactly the particles that leave their subdomains, only to
the neighbors in proximity of their updated positions. On
the receiving side, incoming particles are filtered by using
again the membership test and adding newcomers to the
local list of particles.

It is apparent how the membership of each particle to
one of the three subsets not only reduces the amount of
exchanged data but also supports the division of the local
work done by each GPU in a boundary (the work done on
particles living in external and frontier cells) and in a bulk
(the work done on particles living in internal cells) part.

This division, in turn, makes possible to overlap commu-
nication and computation as described in Section 2.

3.3 Parallel algorithms for large scale graphs

In this section we describe how good performances can be
obtained for problems for which a cluster of GPUs does
not appear as a very suitable platform. To that purpose,
we selected the study of large scale graphs as a repre-
sentative example of a class of problems characterized by
low arithmetic intensity and irregular memory access pat-
terns. Graphs having hundreds of millions of nodes and
billions of edges can be found studying the web graph,
social networks, protein-protein interaction networks, and
bibliographical networks just to mention some application
fields.

One of the fundamental building blocks for the devel-
opment of graph algorithms is the Breadth First Search
(BFS). Starting from a root node, the connected compo-
nent of a graph is explored iteratively by traversing, at
each step, the unvisited neighbors of the nodes previously
discovered. The set of nodes whose neighbors are visited
at each step is called frontier and the traversal of their
edges is called expansion. BFS implementations typically
result in memory-bandwidth-bound codes whose efficiency
depend on the memory access pattern employed during
the search. Parallel architectures with very high memory
bandwidth, such as GPUs, are often used to accelerate
BFS operations by exploiting the fact that the frontier
expansion phase can be performed in no particular order
with respect to the nodes in the frontier and thus mul-
tiple edges can be followed simultaneously. Outstanding
results on a single GPU have been reported by some au-
thors [13,14] following different approaches.

However, the need to analyze graphs of steadily-
growing size has lead to the development of distributed-
memory implementations that combine shared-memory
computing nodes (CPUs and/or GPUs) to process graphs
whose size is in the Terabytes range. In such parallel and
distributed BFS codes, the graph is partitioned among the
available GPUs. The partitioning represents a problem in
itself and a number of solutions, mostly based on heuris-
tics that depend on the features of the graphs, have been
proposed [11,15]. Regardless of the adopted partitioning
scheme, the frontier is typically expanded in two phases.
First, a local expansion is performed on all the GPUs con-
taining a part of the frontier nodes. Their neighbors are
identified and processed in the second phase. Local ver-
tices form the so-called next level frontier set (NLFS) and
are kept local whereas remote vertices are sent to the pro-
cessors owning them. On the receiving side, each GPU
completes its NLFS by adding the received vertices and
a new BFS iteration begins. Although the exact amount
of exchanged data depends on (i) the graph being tra-
versed; (ii) the graph partitioning scheme and (iii) the
BFS level, communications represent, most of the times,
the major bottleneck of distributed-memory BFS codes.
For that reason it is always desirable to limit the amount
of data exchanged during the BFS iterations.
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In the rest of this section, we describe a technique to
drastically limit the size of the messages required to ex-
change information about vertices to be visited during the
most communication intensive levels of a BFS and how it
can be efficiently implemented for GPUs. For simplicity,
we consider a directed graph G = (V, E) (where V indi-
cates the set of vertices and E the set of edges) partitioned
among k GPUs. The k GPU are arranged as a logical grid
with R rows and C columns and mapped onto the adja-
cency matrix AN×N . The partitioning is such that:

– the edge lists of the vertices handled by each GPU
are partitioned among the processors in the same grid
column;

– for each edge, the GPU in charge of the destination
vertex is in the same grid row of the edge owner.

The main advantage of the 2D partitioning is a reduction
of the number of communications. If P is the number of
GPUs, a naive 1D partitioning requires O(P ) data trans-
fers at each step whereas the 2D partitioning only requires
2 × O(

√
P ) communications (see [16] for further details).

With such decomposition, each step of the BFS requires
two communication phases, called expand and fold. The
first one involves the processors in the same grid column
whereas the second those in the same grid row. With this
partitioning to each processor are assigned the edges in
a N

R × N
C sub-matrix of A and N/(RC) vertices. In the

most communication intensive steps, each transfer can in-
volve up to the total number of N/(RC) vertices han-
dled by the target processor. In those steps, limiting the
amount of data being transferred is crucial to achieve high
performance.

The size of the messages can be reduced by following
an approach proposed in references [17,18] and extended
in reference [16] consisting in using bitmaps for data trans-
fers. The idea is that when the size of the lists of vertices
to be sent exceeds, in bits, the number of indices local to
the receiving process, then it is more convenient to send
a bitmap with the bits corresponding to the outgoing ver-
tices set equal to one and the others equal to zero. This
technique reduces the communication times by limiting
the data transmitted to a fixed amount whenever the num-
ber of vertices to be transferred grows over a given thresh-
old. Obviously, that happens in the most expensive steps
of the visit. With the partitioning scheme we adopted the
size of bitmap would be N/(8RC) bytes. Assuming that
the indices to be transferred are 32-bit words, it is more
convenient to transfer the bitmap whenever more than:

N

32RC

vertices need to be sent. This trick makes possible a re-
duction up to a factor 32 (for 32-bit words) in the size of
the messages during the most expensive communication
phases. Obviously, the approach is advantageous as long
as the overhead imposed by the packing of vertices lists
into a bitmap (on the sending side) and the unpacking of
the bitmap (on the receiving side) into a vertices list is
smaller than the time saved by reducing the size of the
messages in the communications.

Since the adjacency matrix and other commonly used
data structures, such as level and predecessor arrays, are
addressed by using vertices as indices, it is more con-
venient to process them via their integer representation.
For that reason, before and after data transfers, vertices
need to be packed and unpacked into/from bit-masks,
respectively.

Algorithm 1 GPU unpack of bitmap into vertex list.
Require: bitmap array bmap of size n
Require: exclusive scan array cbuf of size n

1: tid = blockIdx.x*blockDim.x+threadIdx.x
2: wid = tid/warpSize
3: lid = tid%warpSize
4: mask = (1�lid)

5: if (tid < n) then
6: word = bmap[tid]
7: offs = cbuf[tid]
8: end if

9: for i = 0 to warpSize-1 do
10: if (wid*32 + i) >= n) then
11: break
12: end if
13: w = shfl(word, i)
14: o = shfl(offs, i)
15: loc = popc(w & (mask-1))
16: if (w & mask) then
17: out[o + loc] = wid*warpSize*32 + lid + i*32
18: end if
19: end for

The pack operation can be easily implemented in
CUDA by using atomicOR operations. Given a list of ver-
tices, it is sufficient to launch a kernel with a thread per
element where thread i reads index vi and atomically sets
the bit at position (vi mod 32) of the bitmap word (vi/32).

The unpack operation, on the other hand, is not so sim-
ple because for each bit set equal to one in the bitmap,
the position at which the corresponding vertex must be
inserted depends on the number of the preceding 1s in the
bitmap. For that reason, before the unpack takes place,
an exclusive scan on the bitmap array is performed con-
sidering, for each word, the number of bits set equal to
one in place of the integer value. The resulting array con-
tains, for each word, the starting offset in the output list
at which the vertices corresponding to the bits set equal
to one should be inserted. This information makes pos-
sible to process each word of the bitmap independently
from the others having to compute only intra-word vertex
offsets. In order to utilize the GPU memory bandwidth ef-
ficiently, it is advisable to use a warp-centric approach for
the unpack kernel taking advantage of the shuffle instruc-
tions, available starting on the Kepler architecture (in a
few words, threads of a warp can read each others’ regis-
ters). The idea is to read one bitmap word per thread and
to process consecutive blocks of 32 words within the warp.
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Fig. 9. Comparison of (Giga) Traversed Edges Per Seconds
(TEPS) obtained by using a number of K20X GPUs ranging
from 1 to 4096 keeping the graph scale per processor fixed.
Blue bars (left) report the TEPS obtained with plain transfers
(exchange of vertices lists). Red bars (right) report the TEPS
with bitmap transfers.

For each word, only the threads whose position in the
warp match the bits set equal to one write the output ver-
tices at consecutive positions. Shuffle operations are used
to broadcast the 32 words to the warp threads avoiding
additional shared/global memory reads/writes and block
synchronizations. Algorithm 1 shows a pseudo-code for
the unpack kernel. At the beginning, each thread com-
putes its warp id (line 2), its index inside the warp (the
so-called lane id, line 3) and its mask (line 4). In lines 5–8
the bitmap and the offset array are read, one element per-
thread. Words are processed consecutively starting from
lane 0 to lane 31. Only the words effectively read are pro-
cessed (the last warp may read less than 32 elements if
the bitmap size is not a multiple of 32, lines 10–12). With
the shuffle instructions at lines 13–14 the current thread
broadcasts its word and offset to the other threads in the
warp. Now each thread computes a thread offset by count-
ing the number of bits set equal to one at positions less
than its lane id. This is done with the popc intrinsic that
returns the number of bits that are set in its argument
(line 15). Finally, each thread with lane id corresponding
to a bit set equal to one (line 16) writes in the output ar-
ray the global bitmap index of the corresponding bit (i.e.
the vertex id, line 17). Consecutive threads write at con-
secutive positions obtained by adding the thread and the
word offsets.

The advantage provided by the reduction of the mes-
sage size can be dramatic for data intensive applications
like graph traversal. As shown in Figure 9, the number
of Traversed Edges Per Seconds (TEPS), a performance
metric introduced by the graph500 benchmark, doubles by
using bitmap transfers and reaches the outstanding value
of more than 800 billions by using 4096 K20X GPUs.

4 Conclusions and future perspectives

We have presented results obtained with multi-GPU codes
in several disciplines. We showed how the stream con-
cept offered by CUDA allows to hide the communication
overhead provided that the computation executed concur-
rently with the communication is long enough. A hybrid
multi-GPU code based on a suitable combination of these
two mechanisms may reach a very good parallel efficiency.
Clusters of GPUs are very promising platforms for large
scale simulations of physical systems.

The architecture of high performance clusters with
GPUs has not changed very much in the past years. A
typical node in a high performance cluster has one or more
accelerators connected to a CPU using PCI Express. Even
at the fastest PCIe 3.0 speed (8 Giga-transfers per second
per lane) and with the widest links (16 lanes), the band-
width provided over this link is just a fraction of the band-
width available between the CPU and its system memory.
In a multi-GPU node, there may also be PCI-e switches
that further reduce the available bandwidth. The systems
could still be effectively utilized in most situations, but the
developers must take care of overlapping data transfers
with computation to hide the transfer time and orches-
trate GPU access over PCI-e to maximize performance,
using for example some of the techniques discussed in this
paper.

The need for this level of tuning is going to disap-
pear in the near future. Upcoming NVIDIA GPUs will
offer NVLink, a new high speed connection to the CPU
and system memory. Recently, the U.S. Department of
Energy announced its plans to build two of the world’s
fastest supercomputers – the Summit system at Oak Ridge
National Laboratory and the Sierra system at Lawrence
Livermore National Laboratory – using this new intercon-
nect. NVLink is a high-bandwidth, energy-efficient path
between the GPU and the CPU capable of achieving peak
data rates of 80 Gigabytes per second, almost 5 times
faster than PCI-e 3.0 and comparable in speed to the cur-
rent CPU memory systems. NVLink will be available with
the next generation Pascal GPU in 2016. IBM has already
announced that the POWER CPU will have this new
interconnect on die. In addition to increasing the speed
of the communication between CPU and GPU, NVLink
could also be utilized for GPU to GPU (peer to peer) com-
munications enabling multiple GPUs to share data with
very high bandwidth.

Another important hardware feature in upcoming ac-
celerators is stacked memory. Most computational work-
loads are bandwidth limited. While there have been
progress in the memory subsystem (the current NVIDIA
GPUs have a memory bandwidth close to 300 GB/s), it
is difficult to imagine wider memory interfaces and higher
clocks to move in the TB/s range. All the major ven-
dors have announced upcoming products (NVIDIA Pascal
GPU, Intel Xeon Phi Knight Landing) featuring stacked
memory. Stacked memory is a technology which enables
multiple layers of DRAM components to be integrated
vertically on the package along with the GPU. It pro-
vides several times greater bandwidth, more than twice
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the capacity, and quadrupled energy efficiency, compared
to current off-package GDDR5. By combining large high-
bandwidth memory in the same package with the GPU,
the voltage regulators could be placed close to the chip
for efficient power delivery. This will also result in a new
Pascal module that is one-third the size of current PCIe
boards, allowing system vendors to build denser solutions.
The large increase in GPU memory size and bandwidth
provided by stacked memory will enable GPU applications
to access a much larger working set of data at higher band-
width, improving efficiency and computational through-
put, and reducing the frequency of off-GPU transfers.

Starting with CUDA 6, Unified Memory simplifies
memory management by giving a single pointer to data,
and automatically migrating pages on access to the pro-
cessor that needs them. On Pascal GPUs, Unified Mem-
ory and NVLink will provide the ultimate combination of
simplicity and performance. The full-bandwidth access to
the CPUs memory system enabled by NVLink means that
NVIDIAs GPU can access data in the CPUs memory at
the same rate as the CPU can.
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