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Abstract. A non-linear behavior of dynamic model of the magma-plug system under the action of N-shaped
friction force and stochastic disturbances is studied. It is shown that the deterministic dynamics essentially
depends on the mutual arrangement of an equilibrium point and the friction force branches. Variations of
this arrangement imply bifurcations, birth and disappearance of stable limit cycles, changes of the stability
of equilibria, system transformations between mono- and bistable regimes. A slope of the right increasing
branch of the friction function is responsible for the formation of such regimes. In a bistable zone, the
noise generates transitions between small and large amplitude stochastic oscillations. In a monostable
zone with single stable equilibrium, a new dynamic phenomenon of noise-induced generation of large
amplitude stochastic oscillations in the plug rate and pressure is revealed. A beat-type dynamics of the plug
displacement under the influence of stochastic forcing is studied as well.

1 Introduction

It has long been known that the dynamics of volcanic
systems is very complex due to different non-linear pro-
cesses leading to a great variety of possible states during
the same eruption [1,2]. The most critical questions when,
where and how volcanic eruptions happen will remain to
a great extent empirical without modeling predictions of
their non-linear dynamics. Therefore, formulation and de-
velopment of suitable mathematical models of volcanic be-
havior represents an important research problem [3–6].

A great number of uncertainties in geophysical and
chemical parameters of volcanic eruptions [7] testifies that
volcanoes (similar to many climate systems modeled in
terms of probabilities [8–10]) represent stochastic and
chaotic systems [11,12]. An important point is that some
interactions between system nonlinearities and noises
therewith are responsible for the origination and evolu-
tion of different probabilistic effects. So, among others,
noise-induced transitions [13], noise-induced chaos [14,15],
stochastic resonance [16,17] and multiresonance [18] may
be mentioned. It is important to keep in mind that
stochastic phenomena frequently met in a lot of non-linear
models are the subjects of active studies in different re-
search areas [13,19–24].

An important point is that a variety of silicic volca-
noes closely studied during the last decades demonstrate
an intricate oscillatory behavior [25–28]. So, for example,
the Mount St. Helen’s dome-building eruption in 2004 and
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2005 has demonstrated a near-equilibrium cyclic behavior,
during which the solid plug uplift was caused by magma
flux from below with a practically steady-state rate of the
order 1–2 m3 s−1. This volcanic eruption was accompanied
by repetitive drumbeat earthquakes of a 1–2 min period-
icity with focal depth <1 km and magnitudes <2 [29–31].
A nearly periodic behavior of such drumbeat seismic-
ity can be explained by stick-slip motions of a volcanic
plug [25,28]. A new nonlinear dynamic model of the plug
motion based on this stick-slip mechanism was suggested
in reference [29]. This model connects the plug dynamics
with a damped oscillator. Below we use this differential
model to demonstrate unusual nonlinear dynamics of plug
motions and, in particular, origination of the large ampli-
tude stochastic oscillations (LASO) even in the presence
of small noises.

A new evolutionary model describing non-linear plug
dynamics based on experimental data of the Mount St.
Helen’s (MSH) eruption was derived and discussed in de-
tail in reference [29]. A scheme of this process represent-
ing recurrent stick-slip dynamics of the solid plug along its
margins with the friction force F is illustrated in Figure 1.

Let us pay our attention to the main physical aspects
of this process. The magma flux inflows into the base of an
eruptive conduit with practically steady-state rate Q. A
dacite plug of solidified magma therewith clogs the upper
part of conduit. In addition, the solid plug is mobile be-
cause of basal accretion with mass rate ρB and pressure p
acting from below (here ρ and B being the magma bulk
density and the volumetric rate of magma solidification).
The plug mass m is dependent of time t as m = m0 + κt
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Fig. 1. A scheme of the plug dynamics after Iverson et al. [29].

due to the difference in mass rates ρB and ρrE (here m0

is the initial plug mass, ρr is the bulk density of plug, E is
the volumetric rate of surface erosion, and κ = ρB−ρrE is
assumed constant). Since the solidification of magma and
erosion are both too slow to induce changes of the plug
mass with time, in the present paper, the plug mass is
assumed to be constant κ = 0. Other physical parameters
such as the magma compressibility α1, the conduit wall
compliance α2 and the horizontal cross-sectional area A,
are estimated by Iverson et al. [29].

An important point of the model is that a non-linear
plug dynamics is governed by the friction force F de-
pendent of the plug velocity u and the plug weight mg
(here g is the acceleration due to gravity) while the con-
duit volume V is controlled by the mass conservation.
A non-linear differential model of this process containing
three independent variables u (plug velocity), p (pressure)
and V (conduit volume) was derived by Iverson et al. [29].
We use their model below to demonstrate new stochas-
tically induced effects and dynamic regimes of volcanic
plugs.

2 Deterministic model. Attractors
and bifurcations

The mathematical model of reduced non-linear equations,
which is based on conservation of the solid plug linear
momentum, solid plug mass and conduit fluid mass has
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Fig. 2. Plots of the friction functions. The solid line (red on-
line) represents the function F0(u) (see Eq. (2)). The func-
tion FN (u) is plotted accordingly to expression (3) with uref =
6.67×10−6 m s−1, ucr = 10uref for kN = 1×1010 kg s−1 by the
dash-dotted line (green online), and for kN = 4 × 1010 kg s−1

by the dashed line (blue online).

the form [29]

du

dt
= −g +

1
m0

(pA − F ) ,

dp

dt
= − 1

(α1 + α2)V
(Au + RB − Q) ,

dV

dt
=

α1

α1 + α2
(Au + RB − Q) + Q − B, (1)

where R = 1−ρ/ρr = 1−(ρ0/ρr) exp [α1(p − p0)] is found
from the isothermal equation of state. Here, p0 is a static
equilibrium pressure, and ρ0 is a magma density. Physical
parameters of this system are [29]: B = Q = 2 m3 s−1,
m0 = 3.6× 1010 kg, A = 30 000 m2, p0 = 1.2936× 107 Pa,
α1 = 10−7 Pa−1, α2 = 10−9 Pa−1, F0 = 3.528 ×
1010 kg m s−2, uref = 0.1Q/A = 6.67 × 10−6 m s−1,
V0 = 6.32 × 105 m3, c = 1.7 × 10−4, g = 9.8 m s−2,
ρ0 = ρr = 2000 kg m−3.

The main aspects of MSH friction force measured in
experiments [30] can be described by a function [29]

F = sgn(u)F0(u), F0(u) = F0

(
1 − c sinh−1|u/uref|

)
,
(2)

where sgn(u) is the sign of u, F0 is the friction force at
static equilibrium, c � 1 is a rate-weakening parameter
and uref is a reference value of u. Expression (2) describes
the main physical features of the plug dynamics: the fric-
tion force at u = 0 abruptly changes its sign because the
gravity force (which shifts the plug in downward direction)
is oppositely directed to the friction force. The function
F0(u) is plotted in Figure 2 by the solid (red online) curve.

However, a monotonically decreasing behavior of the
friction force (2) is not a good physical approximation
of the real friction force for any u > 0. It is well-known
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that the friction force in complex liquids, suspensions, and
flows of magma (see, among others, [28]), is not monotonic
and combines decreasing and increasing parts. Usually, for
complex nonlinear flows, the friction force has a so-called
N -shaped form: for small u, friction F (u) monotonically
increases, after that there is a part with negative slope,
and further, for sufficiently large u, the function F (u) in-
creases again.

Taking this into account let us model this force by the
following close continuous N -shaped function

F (u) = sgn(u)FN (u), (3)

where

FN (u) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F0
u

uref
, 0 < u < uref

F0(u), uref ≤ u ≤ ucr

F0(ucr) + kN (u − ucr), u > ucr.

This function sharply increases within the short initial
interval 0 < u < uref . In the middle zone, uref ≤ u ≤
ucr, the function F (u) = F0(u) slowly decreases. For u >
ucr, the function F (u) increases again with positive slope
defined by the parameter kN . Some exemplary plots of
the function FN (u) for ucr = 10uref and different kN are
shown in Figure 2 by broken lines.

This N -shaped function FN (u) generates different dy-
namic regimes depending on a position of the point ucr

where the friction force slope changes its sign. A type
of deterministic dynamics depends on the answer to the
question: whether on the right or left side of the critical
point ucr, the equilibrium point (the point of intersection
of nullclines u̇ = 0, ṗ = 0) is localized? Namely, if the
equilibrium point lies on the decreasing interval (on the
left side of ucr), this equilibrium is unstable. In this case, a
limit cycle may appear around such unstable equilibrium.

From the other hand, if the equilibrium point lies on
the increasing interval (on the right side of ucr), this point
is stable. If this is really the case, the dynamic system is
locally stable for small deviations from the equilibrium
point. However, if deviations from this point are large
enough, the system can change its state and, due to its
nonlinearity, turn into a stable limit cycle. In this case,
the system is bistable. Figure 3 shows possible locations
of nullclines so that the lower corner of the friction curve
may be placed as follows: (i) on the right side of the pres-
sure nullcline (e.g., ucr = 11uref), (ii) on the pressure
nullcline (ucr = 10uref) and (iii) on the left side of the
pressure nullcline (e.g., ucr = 9uref).

Let us briefly discuss the system dynamics correspond-
ing to these locations. In case (i), there is an unstable equi-
librium with a rather large stable cycle around it. This
case was studied in detail in reference [32]. The critical
case (ii) demonstrates the same dynamics as case (i). Its
numerical modeling however is connected with some diffi-
culties due to the stiff dynamic behavior. The system has
a stable equilibrium in case (iii). In what follows, we focus
on the case (iii) with fixed ucr = 9uref and varying kN .
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Fig. 3. Nullclines of pressure p (dotted, red online) and veloc-
ity u (blue online) for different possible locations of a critical
point u = ucr: ucr = 9uref (dashed), ucr = 10uref (solid), and
ucr = 11uref (dash-dotted).

If kN is small enough, the equilibrium point is rounded
by a big stable cycle (the phase portrait for kN = 3 ×
1010 kg s−1 is shown in Fig. 4a). Two attractors (the
stable equilibrium and the limit cycle) are divided by an
unstable cycle. A saddle-node bifurcation (vanishing of a
stable cycle) occurs with increasing kN at a critical value
kN = k∗

N = 3.37 × 1010 kg s−1. The phase portrait for
kN = 4 × 1010 kg s−1 > k∗

N is presented in Figure 4b.
An important point is that when the stable (blue) and
unstable (red) cycles merge together (see Fig. 4a) they
vanish and one stable equilibrium (black point) remains
only. Some details of such variations in deterministic dy-
namics of the model are shown in Figure 5.

In Figure 5a, the real parts of eigenvalues of the Jacobi
matrix for the equilibrium point are plotted. As one can
see, real parts are negative, so this equlibrium is stable for
a wide range of the parameter kN .

In Figure 5b, a bifurcation diagram of this model is
presented. Here, u-coordinates of extreme points of at-
tractors and repellers as functions of kN are shown: stable
cycles (thick solid, blue), unstable cycles (thick dashed,
red), and stable equilibria (thin black). The unstable cy-
cle separates basins of attraction of the stable cycle and
equilibrium. When kN is small enough, the unstable cy-
cle is very close to equilibrium, and a basin of equilibrium
attraction is quite small. With increasing kN , this increas-
ing unstable cycle moves away from the equilibrium and
approaches the stable cycle. At the bifurcation point k∗

N ,
they merge and annihilate. For kN > k∗

N , a stable equilib-
rium is a single attractor of the system.

In what follows, a mutual arrangement of the equilib-
rium and both cycles is essential for the understanding
of probabilistic mechanisms of the generation of large and
small amplitude stochastic oscillations (LASO and SASO,
respectively).
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Fig. 4. Phase portraits for ucr = 9uref at kN = 3×1010 kg s−1

(a) and kN = 4 × 1010 kg s−1 (b). The thick lines mark cy-
cles: stable (external, blue online) and unstable (internal, red
online) ones (upper panel). The black points show the stable
equilibria. The pseudo-separatrix is plotted by the dashed line
(lower panel).

3 Stochastic dynamics

In order to study the role of random noise on system dy-
namics let us replace the first deterministic equation in
equation (1) by the following stochastic equation (in Ito
sense) [33]

du

dt
= −g +

1
m0

(pA − F (u)) − εF (u)ξ(t)
m0

, (4)

where ξ(t) is a standard Gaussian white noise with pa-
rameters 〈ξ(t)〉 = 0, 〈ξ(t)ξ(τ)〉 = δ(t − τ), and ε is the
intensity of multiplicative noise modelling random distur-
bances in the friction force. The stochastic model (4) is
obtained from the deterministic model (1) after replacing:
F (u) → F (u)(1 + εξ).
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Fig. 5. Characteristics of the deterministic system. (a) Real
parts of eigenvalues of the Jacobi matrix for equilibrium, (b) u-
coordinates of extreme points of attractors and repellers as
functions of kN for ucr = 9uref : stable cycles (thick solid, blue
online), unstable cycles (thick dashed, red online), and equilib-
ria (thin line). The value k∗

N marks the saddle-node bifurcation
point.

Here, we fix ucr = 9uref and study a stochastic behav-
ior for different kN determining the slope of the friction
force (3).

In numerical simulation of random trajectories, we
used the Euler-Maruyama method [34] with time step
10−5 s. To generate the independent, standard, and
normally distributed pseudo-random numbers model-
ing stochastic disturbances, we applied the Box-Muller
transform [35].

Let kN = 3 × 1010 kg s−1 (see Fig. 4 for the deter-
ministic model). In this case, a stable equilibrium and a
stable cycle coexist in the deterministic system. Also let
this equilibrium point represents the initial state. Then
stochastic trajectories lie in the vicinity of the equilib-
rium point for small noise (ε = 4 × 10−6) and the sys-
tem has a SASO-type dynamics (a small spot in Fig. 6a,
grey color online). With increasing the noise intensity,
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Fig. 6. Stochastic phase trajectories for ucr = 9uref , kN = 3 × 1010 kg s−1: (a) ε = 3 × 10−6 (grey online), (b) ε = 4 × 10−6

(green online), (c) time series.

stochastic trajectories leave the basin of attraction of this
equilibrium point, cross the separatrix (red line) and are
attracted to the stable cycle (blue line) (see Fig. 6b, green
color). Thus, a noise-induced transition from SASO to
LASO takes place. The time series demonstrating this
transition are presented in Figure 6c. An important point
is that the plug velocity increases abruptly by action of
stochastic noises.

A very important phenomenon of generation of noise-
induced oscillations occurs with increasing the noise
intensity in the region where the deterministic system
exhibits just a stable equilibrium. So, for example, if
kN = 4 × 1010 kg s−1, the deterministic system has a
single attractor – a point of stable equilibrium. As would
be expected, stochastic trajectories are localized near this
equilibrium point in the case of small noises (ε = 3×10−6).
This SASO-type dynamics is shown in Figure 7 by the grey
color.

As noise intensity increases (ε = 10×10−6), stochastic
trajectories going away from the equilibrium point gener-
ate the LASO-type dynamics (green color in Fig. 7). Note

that in the framework of deterministic model, such large
amplitude oscillations are impossible.

An underlying reason of this noise-induced phe-
nomenon is connected with peculiarities of the phase
portrait of the deterministic system. Indeed, small de-
viations from the equilibrium result in small-amplitude
trajectories that correspond to the subthreshold response.
If we take initial deviations larger than some thresh-
old, large-amplitude trajectories with “long excursions”
appear (see Figs. 4b and 7c). This corresponds to the
suprathreshold response. Around the equilibrium, one can
find a set of initial points corresponding to the subthresh-
old response. This subthreshold domain is detached from
the suprathreshold motion by the curve called “pseudo-
separatrix”. In Figures 4b and 7c, this pseudo-separatrix
is plotted by the dashed red lines. For weak noise (ε = 3×
10−6), random trajectories of the stochastic system start-
ing from equilibrium do not cross this pseudo-separatrix
and localize in the subthreshold domain. For increasing
noise (ε = 10×10−6), the trajectories with high probabil-
ity can cross the pseudo-separatrix and continue to move
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Fig. 7. Stochastic phase trajectories for ucr = 9uref , kN = 4 × 1010 kg s−1: (a) ε = 3 × 10−6 (grey online) and ε = 10 × 10−6

(green online); (b) time series; (c) an enlarged fragment with pseudoseparatrix (red online).

in the suprathreshold zone far from the equilibrium (see
Fig. 7).

Thus, a new dynamic scenario of noise-induced gen-
eration of large-amplitude stochastic oscillations appears
with increasing the noise intensity.

Consider now how the transition from SASO to LASO
dynamics affects the plug displacement d(t) =

∫ t

0 u(τ)dτ.
Some changes in dynamics of plug displacement are shown
in Figure 8. For weak noise ε = 3×10−6, a motion of plug
is close to uniform. An increase of noise intensity up to
ε = 10 × 10−6 breaks up this uniformity and leads to a
drumbeat-type beats of the plug displacement. As one can
see, abrupt changes in the volcanic activity occur with an
unessential increase of noise intensity.

4 Conclusion

The presence of a N -shaped form of the friction force in
deterministic model leads to the variability in dynamics.

The system can exhibit the monostable (just equilibrium
or cycle) and bistable (both of them) regimes. We stud-
ied a dynamics near the saddle-node bifurcation where
the system demonstrates a phenomenon of abrupt vanish-
ing of self-oscillations. Namely, the dynamic system un-
der consideration possesses a single stable point of equi-
librium instead of a cycle. At first glance it would seem
that the magma flux under the plug is stabilizing and go-
ing to a constant value. However, the stochastic analysis
demonstrates that this is not the case. So, for instance,
even sufficiently small external noises cause some stochas-
tic large amplitude oscillations of the main physical pa-
rameters (plug velocity and pressure) in regions with a
single stable equilibrium point due to high excitability of
the dynamic system. It is worth noting that the non-linear
volcano model under consideration is a new significant ex-
ample of an expanding collection [19] of excitable systems
attracting an increasing interest of researchers.

In the present paper, an important point is that
whether the contribution of large amplitude oscillations
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Fig. 8. (a) Displacement d (measured in meters) as a function
of time t (measured in seconds) for ucr = 9uref , kN = 4 ×
1010 kg s−1, ε = 3 × 10−6 (dashed, grey online) and ε = 10 ×
10−6 (solid, green online); (b) an enlarged fragment.

(LASO) or small amplitude oscillations (SASO) is domi-
nated in a non-linear behavior. So, if the slope coefficient
kN of the right branch of the friction function is small
enough (when the unstable cycle shown by the red dashed
lines in Fig. 5b merges with the equilibrium point shown
by the black solid line), the non-linear system demon-
strates a LASO-type dynamics. The stable and unstable
cycles merge together (so that the ends of the red dashed
and blue solid lines come together) with increasing kN .
In this case, the SASO regime is dominated. On further
increasing of kN the dynamic system has a point of equi-
librium (just the black solid line) with a rather large basin
of attraction (Fig. 5b).

A noise-induced transformation from SASO to LASO-
type regime significantly changes the dynamics of plug
displacement. It is of prime importance that an increase
of noise intensity leads to a drumbeat-type beats of the
plug displacement with irregular periodicity dependent of
noise. In addition, the periods of monotonic growth are

replaced by the periods of nearly constant displacement,
which in their turn, are changed by the time intervals with
abrupt increasing of the plug displacement. Such a beat-
type behavior is a building block for understanding the
physical mechanisms of volcanic drumbeat seismicity.

This work was supported by the Ministry of Education and
Science of the Russian Federation under the project No. 315.
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