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Abstract. Two phases of hot hadronic matter are described with emphasis put on their distinction. Here
the role of strange particles as a characteristic observable of the quark-gluon plasma phase is particularly
explored.

1 Phase transition or perhaps transformation:
Hadronic gas and the quark-gluon plasma

I explore here consequences of the hypothesis that the
energy available in the collision of two relativistic heavy
nuclei, at least in part of the system, is equally divided
among the accessible degrees of freedom. This means that
there exists a domain in space in which, in a suitable
Lorentz frame, the energy of the longitudinal motion has
been largely transformed to transverse degrees of freedom.
The physical variables characterizing such a “fireball” are
energy density, baryon number density, and total volume.
The basic question concerns the internal structure of the
fireball. It can consist either of individual hadrons, or in-
stead, of quarks and gluons in a new physical phase, the
plasma, in which they are deconfined and can move freely
over the volume of the fireball. It appears that the phase
transition from the hadronic gas phase to the quark-gluon
plasma is controlled mainly by the energy density of the
fireball. Several estimates1 lead to 0.6–1GeV/fm3 for the
critical energy density, to be compared with nuclear mat-
ter 0.16GeV/fm3.

a The original address byline 1983 : CERN, Genva, Switzer-
land and Institut für Theoretische Physics der Universität
Frankfurt/M; originally printed in LBL-16281 pp. 489–510;
also: report number UC-34C; DOE CONF-830675; preprint
CERN-TH-3685 available at https://cds.cern.ch/record/

147343/files/198311019.pdf.
b e-mail: rafelski@physics.arizona.edu
1 An incomplete list of quark-gluon plasma papers includes

[1–10].

We first recall that the unhandy extensive variables,
viz., energy, baryon number, etc., are replaced by inten-
sive quantities. To wit, the temperature T is a measure
of energy per degree of freedom; the baryon chemical po-
tential μ controls the mean baryon density. The statistical
quantities such as entropy ( = measure of the number of
available states), pressure, heat capacity, etc., will also be
functions of T and μ, and will have to be determined. The
theoretical techniques required for the description of the
two quite different phases, viz., the hadronic gas and the
quark-gluon plasma, must allow for the formulation of nu-
merous hadronic resonances on the one side, which then at
sufficiently high energy density dissolve into the state con-
sisting of their constituents2. At this point, we must ap-
preciate the importance and help by a finite, i.e., nonzero
temperature in reaching the transition to the quark-gluon
plasma: to obtain a high particle density, instead of only
compressing the matter (which as it turns out is quite dif-
ficult), we also heat it up; many pions are generated in
a collision, allowing the transition to occur at moderate,
even vanishing baryon density [14].

Consider, as an illustration of what is happening, the
p, V diagram shown in fig. 1. Here we distinguish three do-
mains. The hadronic gas region is approximately a Boltz-
mann gas where the pressure rises with reduction of the
volume. When the internal excitation rises, the individual
hadrons begin to cluster. This reduces the increase in the
Boltzmann pressure, since a smaller number of particles
exercises a smaller pressure. In a complete description of
the different phases, we have to allow for a coexistence of

2 These ideas originate in Hagedorn’s statistical bootstrap
theory [11–13].
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Fig. 1. p-V diagram for the gas-plasma first order transition,
with the dotted curve indicating a model-dependent, unstable
domain between overheated and undercooled phases.

hadrons with the plasma state in the sense that the in-
ternal degrees of freedom of each cluster, i.e., quarks and
gluons, contribute to the total pressure even before the dis-
solution of individual hadrons. This does indeed become
necessary when the clustering overtakes the compressive
effects and the hadronic gas pressure falls to zero as V
reaches the proper volume of hadronic matter. At this
point the pressure rises again very quickly, since in the
absence of individual hadrons, we now compress only the
hadronic constituents. By performing the Maxwell con-
struction between volumes V1 and V2, we can in part ac-
count for the complex process of hadronic compressibility
alluded to above.

As this discussion shows, and detailed investigations
confirm [15–18], we cannot escape the conjecture of a first
order phase transition in our approach. This conjecture
of [8] has been criticized, and only more recent lattice
gauge theory calculations have led to the widespread ac-
ceptance of this phenomenon, provided that an internal
SU(3) (color) symmetry is used —SU(2) internal symme-
try leads to a second order phase transition [10]. It is diffi-
cult to assess how such hypothetical changes in actual in-
ternal particle symmetry would influence phenomenolog-
ical descriptions based on an observed picture of nature.
For example, it is difficult to argue that, were the color
symmetry SU(2) and not SU(3), we would still observe the
resonance dominance of hadronic spectra and could there-
fore use the bootstrap model. All present understanding of
phases of hadronic matter is based on approximate mod-
els, which requires that table 1 be read from left to right.

I believe that the description of hadrons in terms of
bound quark states on the one hand, and the statisti-
cal bootstrap for hadrons on the other hand, have many
common properties and are quite complementary. Both
the statistical bootstrap and the bag model of quarks are
based on quite equivalent phenomenological observations.
While it would be most interesting to derive the phe-
nomenological models quantitatively from the accepted
fundamental basis —the Lagrangian quantum field the-
ory of a non-Abelian SU(3) “glue” gauge field coupled to
colored quarks— we will have to content ourselves in this
report with a qualitative understanding only. Already this
will allow us to study the properties of hadronic matter in

both aggregate states: the hadronic gas and the state in
which individual hadrons have dissolved into the plasma
consisting of quarks and of the gauge field quanta, the
gluons.

It is interesting to follow the path taken by an isolated
quark-gluon plasma fireball in the μ, T plane, or equiv-
alently in the ν, T plane. Several cases are depicted in
fig. 2. In the Big Bang expansion, the cooling shown by
the dashed line occurs in a Universe in which most of the
energy is in the radiation. Hence, the baryon density ν is
quite small. In normal stellar collapse leading to cold neu-
tron stars, we follow the dash-dotted line parallel to the ν
axis. The compression is accompanied by little heating.

In contrast, in nuclear collisions, almost the entire ν, T
plane can be explored by varying the parameters of the
colliding nuclei. We show an example by the full line, and
we show only the path corresponding to the cooling of the
plasma, i.e., the part of the time evolution after the ter-
mination of the nuclear collision, assuming a plasma for-
mation. The figure reflects the circumstance that, in the
beginning of the cooling phase, i.e., for 1–1.5 × 10−23 s,
the cooling happens almost exclusively by the mechanism
of pion radiation [19, 20]. In typical circumstances, about
half of the available energy has been radiated away be-
fore the expansion, which brings the surface temperature
close to the temperature of the transition to the hadronic
phase. Hence a possible, perhaps even likely, scenario is
that in which the freezing out and the expansion happen
simultaneously. These highly speculative remarks are ob-
viously made in the absence of experimental guidance. A
careful study of the hadronization process most certainly
remains to be performed.

In closing this section, let me emphasize that the ques-
tion whether the transition hadronic gas ←→ quark-gluon
plasma is a phase transition (i.e., discontinuous) or contin-
uous phase transformation will probably only be answered
in actual experimental work; as all theoretical approaches
suffer from approximations unknown in their effect. For
example, in lattice gauge computer calculations, we es-
tablish the properties of the lattice and not those of the
continuous space in which we live.

The remainder of this report is therefore devoted to
the study of strange particles in different nuclear phases
and their relevance to the observation of the quark-gluon
plasma.

2 Strange particles in hot nuclear gas

My intention in this section is to establish quantitatively
the different channels in which the strangeness, however
created in nuclear collisions, will be found. In our follow-
ing analysis (see ref. [21]) a tacit assumption is made that
the hadronic gas phase is practically a superposition of
an infinity of different hadronic gases, and all informa-
tion about the interaction is hidden in the mass spectrum
τ(m2, b) which describes the number of hadrons of baryon
number b in a mass interval dm2 and volume V ∼ m.
When considering strangeness-carrying particles, all we
then need to include is the influence of the non-strange
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Table 1. Phase transition of hot hadronic matter in theoretical physics.

Object −→ Observational hypothesis −→ Theoretical consequence

Nature −→ Internal SU(3) symmetry −→ First order phase transition
(on a lattice)

Nature −→ Bootstrap b= resonance −→ First order phase transition
dominance of hadronic in a phenomenological
interactions bootstrap approach

? −→ Internal SU(2) symmetry −→ Second order phase transition
(on a lattice)

Fig. 2. Paths taken in the ν, T plane by different physical
events.

hadrons on the baryon chemical potential established by
the non-strange particles.

The total partition function is approximately multi-
plicative in these degrees of freedom:

ln Z = lnZnon-strange + lnZstrange . (2.1)

For our purposes, i.e., in order to determine the parti-
cle abundances, it is sufficient to list the strange particles
separately, and we find

ln Zstrange(T, V, λs, λq) =

C
{

2W (xK)(λsλ
−1
q + λ−1

s λq)

+2
[
W (xΛ) + 3W (xΣ)

]
(λsλ

2
q + λ−1

s λ−2
q )

}
, (2.2)

where
W (xi) =

(mi

T

)2

K2

(mi

T

)
. (2.3)

We have C = V T 3/2π2 for a fully equilibrated state.
However, strangeness-creating (x → s + s̄) processes in
hot hadronic gas may be too slow (see below) and the
total abundance of strange particles may fall short of
this value of C expected in absolute strangeness chemi-
cal equilibrium. On the other hand, strangeness exchange
cross-sections are very large (e.g., the K−p cross-section is
∼ 100mb in the momentum range of interest), and there-
fore any momentarily available strangeness will always be
distributed among all particles in eq. (2.2) according to
the values of the fugacities λq = λ

1/3
B and λs. Hence we

can speak of a relative strangeness chemical equilibrium.
We neglected to write down quantum statistics cor-

rections as well as the multistrange particles Ξ and Ω−,

as our considerations remain valid in this simple approx-
imation [22]. Interactions are effectively included through
explicit reference to the baryon number content of the
strange particles, as just discussed. Non-strange hadrons
influence the strange faction by establishing the value of
λq at the given temperature and baryon density.

The fugacities λs and λq as introduced here control the
strangeness and the baryon number, respectively. While λs

counts the strange quark content, the up and down quark
content is counted by λq = λ

1/3
B .

Using the partition function eq. (2.2), we calculate for
given μ, T , and V the mean strangeness by evaluating

〈ns − ns̄〉 = λs
∂

∂λs
ln Zstrange(T, V, λs, λq), (2.4)

which is the difference between strange and antistrange
components. This expression must be equal to zero due
to the fact that the strangeness is a conserved quantum
number with respect to strong interactions. From this con-
dition, we get3

λs = λq

∣∣∣∣∣
W (xK) + λ−1

B

[
W (xΛ) + 3W (xΣ)

]

W (xK) + λB

[
W (xΛ) + 3W (xΣ)

]
∣∣∣∣∣
1/2

≡ λqF,

(2.5)
a result contrary to intuition: λs �= 1 for a gas with to-
tal 〈s〉 = 0. We notice a strong dependence of F on the
baryon number. For large μ, the term with λ−1

B will tend
to zero and the term with λB will dominate the expression
for λs and F . As a consequence, the particles with fugac-
ity λs and strangeness S = −1 (note that by convention
strange quarks s carry S = −1, while strange antiquarks s̄
carry S = 1) are suppressed by a factor F which is always
smaller than unity. Conversely, the production of parti-
cles which carry the strangeness S = +1 will be favored
by F−1. This is a consequence of the presence of nuclear
matter: for μ = 0, we find F = 1.

In nuclear collisions, the mutual chemical equilibrium,
that is, a proper distribution of strangeness among the
strange hadrons, will most likely be achieved. By studying
the relative yields, we can exploit this fact and eliminate
the absolute normalization C (see eq. (2.2)) from our con-
siderations. We recall that the value of C is uncertain for
several reasons:

i) V is unknown.

3 Notation has been changed γ → F in order to avoid con-
fusion with phase space occupancy γ.
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ii) C is strongly (t, r)-dependent, through the space-time
dependence of T .

iii) Most importantly, the value C = V T 3/2π2 assumes
absolute chemical equilibrium, which is not achieved
owing to the shortness of the collision.

Indeed, we have (see eq. (4.3) for in plasma strangeness
formation and further details and solutions)

dC

dt
= AH

[
1 − C(t)2

C(∞)2

]
, (2.6)

and the time constant for strangeness production in nu-
clear matter can be estimated to be [23]

τH = C(∞)/2AH ∼ 10−21 s.

Thus C does not reach C(∞) in plasmaless nuclear col-
lisions. If the plasma state is formed, then the relevant
C > C(∞) (since strangeness yield in plasma is above
strangeness yield in hadron gas (see below).

Now, why should we expect relative strangeness equi-
librium to be reached faster than absolute strangeness
equilibrium [21]? Consider the strangeness exchange in-
teraction

K−p −→ Λπ0 (2.7)

which has a cross-section of about 10mb at low energies,
while the ss̄ “strangeness creating” associate production

pp −→ pΛK+ (2.8)

has a cross-section of less than 0.06mb, i.e., 150 times
smaller. Since the latter reaction is somewhat disfavored
by phase space, consider further the reaction

πp −→ YK (2.9)

where Y is any hyperon (strange baryon). This has a cross-
section of less than 1mb, still 10 times weaker than one
of the s-exchange channels in eq. (2.7). Consequently, I
expect the relative strangeness equilibration time to be
about ten times shorter than the absolute strangeness
equilibration time, namely 10−23 s, in hadronic matter of
about twice nuclear density.

We now compute the relative strangeness abundances
expected from nuclear collisions. Using eq. (2.5), we find

Fig. 3. The ratio 〈nK+〉/〈nK−〉 ≡ F−2 as a function of the
baryon chemical potential μ, for T = 100, (20), 160 MeV. The
lines cross where μ = mY−mK; mY is the mean hyperon mass.

from eq. (2.2) the grand canonical partition sum for zero
average strangeness

ln Zstrange
0 C

[
2W (xK)

(
FλK + F−1λK

)

+2W (xΛ)
(
FλBλΛ + F−1λ−1

B λΛ

)

+6W (xΣ)
(
FλBλΣ + F−1λ−1

B λΣ

)]
, (2.10)

where, in order to distinguish different hadrons, dummy
fugacities λi, i = K, K, Λ, Λ, Σ, Σ have been written.
The strange particle multiplicities then follow from

〈ni〉 = λi
∂

∂λi
ln Zstrange

0

∣∣∣∣
λi=1

. (2.11)

Explicitly, we find (notice that the power of F follows the
s-quark content):

〈nK±〉 = CF∓W (xK), (2.12)

〈nΛ/Σ0〉 = CF+1W (xΛ/Σ0)e+μB/T , (2.13)

〈nΛ/Σ0〉 = CF−1W (xΛ/Σ0)e−μB/T . (2.14)

In eq. (2.14) we have indicated that the multiplicity of an-
tihyperons can only be built up if antibaryons are present
according to their (small) phase space. This still seems an
unlikely proposition, and the statistical approach may be
viewed as providing an upper limit on their multiplicity.

From the above equations, we can derive several very
instructive conclusions. In fig. 3 we show the ratio

〈nK+〉/〈nK−〉 = F−2

as a function of the baryon chemical potential μ for sev-
eral temperatures that can be expected and which are
seen experimentally. We see that this particular ratio is
a good measure of the baryon chemical potential in the
hadronic gas phase, provided that the temperatures are
approximately known. The mechanism for this process is
as follows: the strangeness exchange reaction of eq. (2.7)
tilts to the left (K−) or to the right (abundance F ∼ K+),
depending on the value of the baryon chemical potential.

In fig. 4 the long dashed line shows the upper limit for
the abundance of Λ as measured in terms of Λ abundances.
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Fig. 4. Relative abundance of Λ/Λ. The actual yield from the
hadronic gas limit may still be 10–100 times smaller than the
statistical value shown.

Clearly visible is the substantial relative suppression of Λ,
in part caused by the baryon chemical potential factor of
eq. (2.14), but also by the strangeness chemistry (factor
F 2), as in K+K− above. Indeed, the actual relative num-
ber of Λ will be even smaller, since Λ are in relative chem-
ical equilibrium and Λ in hadron gas are not: the reaction
K+p → Λπ0, analogue to eq. (2.7), will be suppressed by
low p abundance. Also indicated in fig. 4 by shading is a
rough estimate for the Λ production in the plasma phase,
which suggests that anomalous Λ abundance may be an in-
teresting feature of highly energetic nuclear collisions [35],
for further discussion see sect. 5 below.

3 Quark-gluon plasma

From the study of hadronic spectra, as well as from
hadron-hadron and hadron-lepton interactions, there
has emerged convincing evidence for the description of
hadronic structure in terms of quarks [24]. For many
purposes it is entirely satisfactory to consider baryons
as bound states of three fractionally charged particles,
while mesons are quark–antiquark bound states. The La-
grangian of quarks and gluons is very similar to that of
electrons and photons, except for the required summations
over flavour and color:

L = ψ
[
F · (p − gA) − m

]
ψ − 1

4
FμνFμν . (3.1)

The flavour-dependent masses m of the quarks are small.
For u, d flavours, one estimates mu,d ∼ 5–20MeV. The
strange quark mass is usually chosen at about 150MeV
[25,26]. The essential new feature of QCD, not easily vis-
ible in eq. (3.1), is the non-linearity of the field strength
F in terms of the potentials A. This leads to an attractive
glue-glue interaction in select channels and, as is believed,
requires an improved (non-perturbative) vacuum state in
which this interaction is partially diagonalized, providing
for a possible perturbative approach.

The energy density of the perturbative vacuum state,
defined with respect to the true vacuum state, is by defi-
nition a positive quantity, denoted by B. This notion has
been introduced originally in the MIT bag model [27–29],

logically, e.g., from a fit to the hadronic spectrum, which
gives

B =
[
(140–210)MeV

]4 = (50–250)MeV/fm3. (3.2)

The central assumption of the quark bag approach is that,
inside a hadron where quarks are found, the true vacuum
structure is displaced or destroyed. One can turn this point
around: quarks can only propagate in domains of space
in which the true vacuum is absent. This statement is a
reformulation of the quark confinement problem. Now the
remaining difficult problem is to show the incompatibility
of quarks with the true vacuum structure. Examples of
such behavior in ordinary physics are easily found; e.g.,
a light wave is reflected from a mirror surface, magnetic
field lines are expelled from superconductors, etc. In this
picture of hadronic structure and quark confinement, all
colorless assemblies of quarks, antiquarks, and gluons can
form stationary states, called a quark bag. In particular,
all higher combinations of the three-quark baryons (qqq)
and quark–antiquark mesons (qq̄) form a permitted state.

As the u and d quarks are almost massless inside a
bag, they can be produced in pairs, and at moderate in-
ternal excitations, i.e., temperatures, many qq̄ pairs will
be present. Similarly, ss̄ pairs will also be produced. We
will return to this point at length below. Furthermore,
real gluons can be excited and will be included here in
our considerations.

Thus, what we are considering here is a large quark
bag with substantial, equilibrated internal excitation, in
which the interactions can be handled (hopefully) pertur-
batively. In the large volume limit, which as can be shown
is valid for baryon number b � 10, we simply have for the
light quarks the partition function of a Fermi gas which,
for practically massless u and d quarks can be given ana-
lytically (see ref. [2] and [30,31]), even including the effects
of interactions through first order in αs = g2/4π:

ln Zq(β, μ) =
gV

6π2
β−3

{(
1 − 2αs

π

)[
1
4
(μβ)4 +

π2

2
(μβ)2

]

+
(

1 − 50
21

αs

π

)
7π4

60

}
. (3.3)

Similarly, the glue is a Bose gas

ln Zg(β, λ) = V
8π2

45
β−3

(
1 − 15

4
αs

π

)
, (3.4)

while the term associated with the difference to the true
vacuum, the bag term, is

ln Zbag = −BV β. (3.5)

It leads to the required positive energy density B within
the volume occupied by the colored quarks and gluons and
to a negative pressure on the surface of this region. At this
stage, this term is entirely phenomenological, as discussed
above. The equations of state for the quark-gluon plasma
are easily obtained by differentiating

ln Z = lnZq + lnZg + lnZvac, (3.6)

with respect to β, μ, and V .
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An assembly of quarks in a bag will assume a geometric
shape and size such as to make the total energy E(V, b, S)
as small as possible at fixed given baryon number and fixed
total entropy S. Instead of just considering one bag we
may, in order to be able to use the methods of statistical
physics, use the microcanonical ensemble. We find from
the first law of thermodynamics, viz.

dE = −P dV + T dS + μdb, (3.7)

that

P = −∂E(V, b, S)
∂V

. (3.8)

We observe that the stable configuration of a single bag,
viz., ∂E/∂V = 0, corresponds to the configuration with
vanishing pressure P in the microcanonical ensemble.
Rather than work in the microcanonical ensemble with
fixed b and S, we exploit the advantages of the grand
canonical ensemble and consider P as a function of μ and
T :

P = − ∂

∂V

[
T ln Z(μ, T, V )

]
, (3.9)

with the result
P =

1
3
(ε − 4B), (3.10)

where ε is the energy density:

ε =
6
π2

{(
1 − 2αs

π

)[
1
4

(μ

3

)4

+
1
2

(μ

3

)2

(πT )2
]

+
(

1 − 50
21

αs

π

)
7
60

(πT )4
}

+
(

1 − 15
4

αs

π

)
8

15π2
(πT )4 + B. (3.11)

In eq. (3.10), we have used the relativistic relation between
the quark and gluon energy density and pressure:

Pq =
1
3
εq, Pg =

1
3
εg. (3.12)

From eq. (3.10), it follows that, when the pressure van-
ishes in a static configuration, the energy density is 4B,
independently of the values of μ and T which fix the line
P = 0. We note that, in both quarks and gluons, the inter-
action conspires to reduce the effective available number
of degrees of freedom. At αs = 0, μ = 0, we find the handy
relation

εq + εg =
(

T

160MeV

)4 [
GeV
fm3

]
. (3.13)

It is important to appreciate how much entropy must be
created to reach the plasma state. From eq. (3.6), we find
for the entropy density S and the baryon density ν

S =
2
π

(
1 − 2αs

π

)(μ

3

)2

πT +
14
15π

(
1 − 50

21
αs

π

)
(πT )3

+
32
45π

(
1 − 15

4
αs

π

)
(πT )3, (3.14)

ν =
2

3π2

{(
1 − 2αs

π

)[(μ

3

)3

+
μ

3
(πT )2

]}
, (3.15)

Fig. 5. Lowest order QCD diagrams for ss̄ production: a,b,c)
gg → ss̄, and d) qq̄ → ss̄.

which leads for μ/3 = μq < πT to the following expres-
sions for the entropy per baryon (including the gluonic
entropy second T 3 term in eq. (3.14)):

S
ν

≈ 37
15

π2 T

μq

T ∼μq←→ 25! (3.16)

As this simple estimate shows, plasma events are ex-
tremely entropy-rich, i.e., they contain very high particle
multiplicity. In order to estimate the particle multiplic-
ity, one may simply divide the total entropy created in
the collision by the entropy per particle for massless black
body radiation, which is S/n = 4. This suggests that, at
T ∼ μq, there are roughly six pions per baryon.

4 Strange quarks in plasma

In lowest order in perturbative QCD, ss̄ quark pairs can
be created by gluon fusion processes, fig. 5a,b,c; and by
annihilation of light quark-antiquark pairs, see fig. 5d. The
averaged total cross-sections for these processes were cal-
culated by Brian Combridge [32].

Given the averaged cross-sections, it is easy to calcu-
late the rate of events per unit time, summed over all final
and averaged over initial states

dN

dt
=

∫
d3x

∑
i

∫
d3k1 d3k2

(2π)3|k1|(2π)3|k2|
ρi,1(k1, x)ρi,2(k2, x)

×
∫ ∞

4M2
ds δ

(
s − (k1 + k2)2

)
kμ
1 k2μσ(s). (4.1)

The factor k1 ·k2/|k1||k2| is the relative velocity for mass-
less gluons or light quarks, and we have introduced a
dummy integration over s in order to facilitate the calcu-
lations. The phase space densities ρi(k, x) can be approx-
imated by assuming the x-independence of temperature
T (x) and the chemical potential μ(x), in the so-called lo-
cal statistical equilibrium. Since ρ then only depends on
the absolute value of k in the rest frame of the equili-
brated plasma, we can easily carry out the relevant in-
tegrals and obtain for the dominant process of the gluon
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fusion reaction fig. 5a,b,c the invariant rate per unit time
and volume [33]:

A =
d4N

d3xdt
≈ Ag =

7α2
s

6π2
MT 3e−2M/T

(
1 +

51
14

T

M
+ . . .

)
,

(4.2)
where M is the strange quark mass4.

The abundance of ss̄ pairs cannot grow forever. At
some point the ss̄ annihilation reaction will restrict the
strange quark population. It is important to appreciate
that the ss̄ pair annihilations may not proceed via the
two-gluon channel, but instead occasionally through γG
(photon-Gluon) final states [34]. The noteworthy feature
of such a reaction is the production of relatively high
energy γ’s at an energy of about 700–900MeV (T =
160MeV) stimulated by coherent glue emission. These γ’s
will leave the plasma without further interactions and pro-
vide an independent confirmation of the s-abundance in
the plasma.

The loss term of the strangeness population is propor-
tional to the square of the density ns of strange and anti-
strange quarks. With ns(∞) being the saturation density
at large times, the following differential equation deter-
mines ns as a function of time [13]

dns

dt
≈ A

{
1 −

[
ns(t)
ns(∞)

]2
}

. (4.3)

Thus we find

ns(t) = ns(∞)
tanh(t/2τ) + ns(0)

ns(∞)

1 + ns(0)
ns(∞) tanh(t/2τ)

, τ =
ns(∞)

2A .

(4.4)
where

τ =
ns(∞)

2A . (4.5)

The relaxation time τ of the strange quark density in
eq. (4.5) is obtained using the saturated phase space in
eq. (4.5). We have [33]

τ ≈τg =
(π

2

)1/2 9M1/2

7α2
s

T−3/2eM/T

(
1+

99
56

T

M
+ . . .

)−1

.

(4.6)
For αs ∼ 0.6 and M ∼ T , we find from eq. (4.6) that
τ ∼ 4×10−23 s. τ falls off rapidly with increasing temper-
ature. Figure 6 shows the approach of ns(t), normalized
with baryon density, to the fully saturated phase space
as a function of time. For M � T = 160MeV, the sat-
uration requires 4 × 10−23 s, while for T = 200MeV, we
need 2 × 10−23 s, corresponding to the anticipated life-
time of the plasma. But it is important to observe that,
even at T = 120MeV, the phase space is half-saturated in

4 In eq. (4.2) a factor 2 was included to reduce the invariant
rate A, see Erratum: “Strangeness Production in the Quark-
Gluon Plasma” Johann Rafelski and Berndt Müller, Phys. Rev.
Lett. 56, 2334 (1986). This factor did not carry through to any
of the following results. However, additional definition factors
“2” show up below in eqs. (4.4), (4.5).

Fig. 6. Time evolution of the strange quark to baryon number
abundance in the plasma for various temperatures T ∼ μq =
μ/3. M = 150MeV, αs = 0.6.

2×10−23 s, a point to which we will return below. Another
remarkable fact is the high abundance of strangeness rela-
tive to baryon number seen in fig. 6 —here, baryon number
was computed assuming T ∼ μq = μ/3 (see eq. (3.15)).
These two facts, namely:

1) high relative strangeness abundance in plasma,
2) practical saturation of available phase space,

have led me to suggest the observation of strangeness as
a possible signal of quark-gluon plasma [35].

There are two elements in point 1) above: firstly, stran-
geness in the quark-gluon phase is practically as abundant
as the anti-light quarks u = d = q̄, since both phase spaces
have similar suppression factors: for u, d it is the baryon
chemical potential, for s, s̄ the mass (M ≈ μq)

s

V
=

s

V
= 6

∫
d3p

(2π)3
1

e
√

p2+M2/T + 1
, (4.7a)

q

V
= 6

∫
d3p

(2π)3
1

e|p|/T+μq/T + 1
. (4.7b)

Note that the chemical potential of quarks suppresses the
q̄ density. This phenomenon reflects on the chemical equi-
librium between qq̄ and the presence of a light quark den-
sity associated with the net baryon number. Secondly,
strangeness in the plasma phase is more abundant than
in the hadronic gas phase (even if the latter phase space
is saturated) when compared at the same temperature and
baryon chemical potential in the phase transition region.
The rationale for the comparison at fixed thermodynamic
variables, rather than at fixed values of microcanonical
variables such as energy density and baryon density, is
outlined in the next section. I record here only that the
abundance of strangeness in the plasma is well above that
in the hadronic gas phase space (by factors 1–6) and the
two become equal only when the baryon chemical poten-
tial μ is so large that abundant production of hyperons
becomes possible. This requires a hadronic phase at an
energy density of 5–10GeV/fm3.
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5 How to discover the quark-gluon plasma

Here only the role of the strange particles in the antici-
pated discovery will be discussed. My intention is to show
that, under different possible transition scenarios, charac-
teristic anomalous strange particle patterns emerge. Ex-
amples presented are intended to provide some guidance
to future experiments and are not presented here in order
to imply any particular preference for a reaction channel.
I begin with a discussion of the observable quantities.

The temperature and chemical potential associated
with the hot and dense phase of nuclear collision can be
connected with the observed particle spectra, and, as dis-
cussed here, particle abundances. The last grand canonical
variable —the volume— can be estimated from particle in-
terferences. Thus, it is possible to use these measured vari-
ables, even if their precise values are dependent on a par-
ticular interpretational model, to uncover possible rapid
changes in a particular observable. In other words, instead
of considering a particular particle multiplicity as a func-
tion of the collision energy

√
s, I would consider it as a

function of, e.g., mean transverse momentum 〈p⊥〉, which
is a continuous function of the temperature (which is in
turn continuous across any phase transition boundary).

To avoid possible misunderstanding of what I want
to say, here I consider the (difficult) observation of
the width of the K+ two-particle correlation function
in momentum space as a function of the average K+

transverse momentum obtained at given
√

s. Most of K+

would originate from the plasma region, which, when it
is created, is relatively small, leading to a comparatively
large width. (Here I have assumed a first order phase
transition with substantial increase in volume as matter
changes from plasma to gas.) If, however, the plasma
state were not formed, K+ originating from the entire
hot hadronic gas domain would contribute a relatively
large volume which would be seen; thus the width of the
two-particle correlation function would be small. Thus,
a first order phase transition implies a jump in the K+

correlation width as a function of increasing 〈p⊥〉K+ , as
determined in the same experiment, varying

√
s.

From this example emerges the general strategy of
my approach: search for possible discontinuities in observ-
ables derived from discontinuous quantities (such as vol-
ume, particle abundances, etc.) as a function of quantities
measured experimentally and related to thermodynamic
variables always continuous at the phase transition: tem-
perature, chemical potentials, and pressure. This strategy,
of course, can only be followed if, as stated in the first
sentence of this report, approximate local thermodynamic
equilibrium is also established.

Strangeness seems to be particularly useful for plasma
diagnosis, because its characteristic time for chemical
equilibration is of the same order of magnitude as the
expected lifetime of the plasma: τ ∼ 1–3 × 10−23 s. This
means that we are dominantly creating strangeness in
the zone where the plasma reaches its hottest stage
—freezing over the abundance somewhat as the plasma
cools down. However, the essential effect is that the
strangeness abundance in the plasma is greater, by a

factor of about 30, than that expected in the hadronic
gas phase at the same values of μ, T . Before carrying
this further, let us note that, in order for strangeness to
disappear partially during the phase transition, we must
have a slow evolution, with time constants of ∼ 10−22 s.
But even so, we would end up with strangeness-saturated
phase space in the hadronic gas phase, i.e., roughly ten
times more strangeness than otherwise expected. For
similar reasons, i.e., in view of the rather long strangeness
production time constants in the hadronic gas phase,
strangeness abundance survives practically unscathed in
this final part of the hadronization as well. Facit:

if a phase transition to the plasma state has oc-
curred, then on return to the hadron phase, there
will be most likely significantly more strange parti-
cles around than there would be (at this T and μ)
if the hadron gas phase had never been left.

In my opinion, the simplest observable proportional to
the strange particle multiplicity is the rate of V-events
from the decay of strange baryons (e.g., Λ) and mesons
(e.g., Ks) into two charged particles. Observations of this
rate require a visual detector, e.g., a streamer chamber.
To estimate the multiplicity of V-events, I reduce the
total strangeness created in the collision by a factor 1/3
to select only neutral hadrons and another factor 1/2 for
charged decay channels. We thus have

〈nV〉 ≈
1
6
〈s〉 + 〈s〉

〈b〉 〈b〉 ∼ 〈b〉
15

, (5.1)

where I have taken 〈s〉/〈b〉 ∼ 0.2 (see fig. 6). Thus for
events with a large baryon number participation, we can
expect to have several V’s per collision, which is 100–1000
times above current observation for Ar-KCl collision at
1.8GeV/Nuc kinetic energy [36].

Due to the high s̄ abundance, we may further expect an
enrichment of strange antibaryon abundances [35]. I would
like to emphasize here s̄ s̄ q̄ states (anticascades) created
by the accidental coagulation of two s̄ quarks helped by
a gluon → q̄ reaction. Ultimately, the s̄ s̄ q̄ states become
s̄ q̄ q̄, either through an s̄ exchange reaction in the gas
phase or via a weak interaction much, much later. How-
ever, half of the s̄ q̄ q̄ states are then visible as Λ decays in
a visual detector. This anomaly in the apparent Λ abun-
dance is further enhanced by relating it to the decreased
abundance of antiprotons, as described above.

Unexpected behavior of the plasma-gas phase transi-
tion can greatly influence the channels in which strange-
ness is found. For example, in an extremely particle-dense
plasma, the produced ss̄ pairs may stay near to each other
—if a transition occurs without any dilution of the den-
sity, then I would expect a large abundance of φ(1020) ss̄
mesons, easily detected through their partial decay mode
(1/4%) to a μ+μ− pair.

Contrary behavior will be recorded if the plasma is
cool at the phase transition, and the transition proceeds
slowly —major coagulation of strange quarks can then be
expected with the formation of sss and s̄ s̄ s̄ baryons and
in general (s)3n clusters. Carrying this even further, su-
percooled plasma may become “strange” nuclear (quark)
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matter [37]. Again, visual detectors will be extremely suc-
cessful here, showing substantial decay cascades of the
same heavy fragment.

In closing this discussion, I would like to give warning
about the pions. From the equations of state of the plasma,
we have deduced in sect. 3 a very high specific entropy per
baryon. This entropy can only increase in the phase transi-
tion and it leads to very high pion multiplicity in nuclear
collisions, probably created through pion radiation from
the plasma [19,20] and sequential decays. Hence by relat-
ing anything to the pion multiplicity, e.g., considering K/π
ratios, we dilute the signal from the plasma. Furthermore,
pions are not at all characteristic for the plasma; they are
simply indicating high entropy created in the collision.
However, we note that the K/π ratio can show substan-
tial deviations from values known in pp collisions —but
the interpretations of this phenomenon will be difficult.

It is important to appreciate that the experiments dis-
cussed above would certainly be quite complementary to
the measurements utilizing electromagnetically interact-
ing probes, e.g., dileptons, direct photons. Strangeness-
based measurements have the advantage that they have
much higher counting rates than those recording electro-
magnetic particles.
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