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Abstract. A free particle coupled to a heat bath can exhibit a number of thermodynamic anomalies
like a negative specific heat, reentrant classicality or a nonmonotonic entropy. These low-temperature
phenomena are expected to be modified at very low temperatures where finite-size effects associated with
the discreteness of the energy spectrum become relevant. In this paper, we explore in which form the
thermodynamic anomalies visible in the specific heat and the entropy of the free damped particle appear for
a damped harmonic oscillator. Since the discreteness of the oscillator’s energy spectrum is fully accounted
for, the results are valid for arbitrary temperatures. As expected, they are in agreement with the third law
of thermodynamics and indicate how the thermodynamic anomalies of the free damped particle can be
reconciled with the third law. Particular attention is paid to the transition from the harmonic oscillator
to the free particle when the limit of the oscillator frequency to zero is taken.

1 Introduction

The thermodynamic properties of a free particle coupled
to a heat bath can exhibit several interesting effects. While
the thermodynamic properties of an isolated free particle
remain classical for arbitrary temperatures, the coupling
to an Ohmic environment can provide a mechanism to
bring the specific heat of the free damped particle down
to zero in the zero-temperature limit. Thus, the validity
of the third law of thermodynamics in this specific case is
ensured by the particle’s environment [1]. For sufficiently
strong coupling, the specific heat obtained from the re-
duced partition function can even become negative [2].
This phenomenon may be understood in terms of a mod-
ification of the density of states of the heat bath caused
by level repulsion due to coupling to the free particle [3].
Negative specific heats have also been discussed in the
context of Kondo superconductors [4], quantum impurity
systems [5], XY spin chains [6], two-level fluctuators [7],
and energy transport in proteins [8].

Recently, it was found that the vanishing specific heat
in the zero-temperature limit is specific to Ohmic heat
baths [9]. Subohmic baths, i.e. baths with an increased
density of low-frequency degrees of freedom with respect
to an Ohmic bath, can even give rise to negative specific
heats in the zero-temperature limit. In such situations,
finite-size effects must be taken into account in order to
save the third law of thermodynamics. Finite-size effects
in the context of the present paper are effects arising when
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the particle is constrained to a large but finite spatial re-
gion. They should not be confused with effects arising from
a finite number of particles contained in the system. In our
case, the latter always consists of just one particle.

Another interesting phenomenon arises for sufficiently
superohmic environments where the bath spectral den-
sity is significantly suppressed at low frequencies. With
decreasing temperature, the specific heat decreases under
the influence of the environmental coupling. However, at
even lower temperatures, the specific heat rises again up
to its classical value [9]. The low density of low-frequency
bath modes renders the bath inefficient in decreasing the
specific heat. Here, again finite-size effects need to be in-
corporated in order to obtain a correct description of the
thermodynamic properties at extremely low temperatures.

With the notable exception of an Ohmic environment,
dissipation is not sufficient to guarantee the validity of
the third law of thermodynamics for the free particle. In
general, finite-size effects due to placing the particle into
a box need to be considered. They are expected to be-
come relevant when the temperature drops below a value
related to the ground state energy of the particle con-
fined to the box. However, this temperature scale can
be made arbitrarily small by making the box sufficiently
large. While the finite-size effects then play their role in en-
suring the validity of the third law, they do not necessarily
impede the observation of the thermodynamic anomalies
discussed above.

Evaluating the thermodynamic properties of a damped
particle in a box is a complicated task which, in general,
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needs to be done numerically. Perturbative approaches
are not sufficient for our purpose because the anomalies
of interest here occur at relatively strong damping. Nu-
merically, a damped particle on a finite chain has been
treated, but there the focus was on the dissipative phase
transition [10].

An analytically more tractable system is the damped
harmonic oscillator for which the discreteness of the sys-
tem’s energy spectrum is inherent. Some results for ther-
modynamic low-temperature properties in the presence of
non-Ohmic damping have been discussed in reference [11].
The related problem of a charged particle in a magnetic
field and a harmonic potential has been widely stud-
ied [12–18]. Also, systems containing more than one har-
monic degree of freedom have been discussed recently [19].

In the following, we will focus on the properties of
the damped harmonic oscillator for small oscillator fre-
quency. This will allow us to make connection to the
one-dimensional free particle and in particular to decide,
whether the thermodynamic anomalies found for the free
particle are accessible to observation in a harmonic poten-
tial. We will start in Sections 2 and 3 by reviewing some
basic relations for damped quantum systems. Specifically,
in Section 2 we introduce the reduced partition function
on which our evaluation of the thermodynamic quantities
will be based. The explicit expressions for the reduced par-
tition functions will give us a first idea of the transition
from the damped harmonic oscillator to the damped free
particle. In Section 3 we will introduce the Laplace trans-
form of the damping kernel which within the scope of this
paper is the central quantity describing the heat bath.

In Section 4 we will take the point of view of the
bath [3] and study how the bath density of states is modi-
fied when a harmonic oscillator is coupled to it. The results
will provide us with important information about the re-
lation between the damped harmonic oscillator and the
damped free particle. In Sections 5 and 6, we will discuss
the specific heat and entropy, respectively, and we will
make the connection between features found in the spe-
cific heat of a free damped particle and those found for a
damped harmonic oscillator. Finally, in Section 7, we will
present our conclusions.

2 Reduced partition function

As was first pointed out in reference [1], thermody-
namic quantities in the quantum regime beyond the weak-
coupling limit between system (S) and heat bath (B) are
not uniquely defined. Here, we choose to base the deriva-
tion of thermodynamic quantities on the reduced partition
function of the system

Z =
ZS+B

ZB
(1)

obtained from the partition function ZS+B of system and
heat bath and the partition function ZB of the heat bath
alone. In the absence of any coupling between system

and bath, we have ZS+B = ZSZB and the reduced parti-
tion function (1) equals the partition function of the sys-
tem ZS. In general, the reduced partition function will
differ from the partition function of the uncoupled sys-
tem, thereby describing the influence of the heat bath on
the thermodynamic properties of the system.

Applying the usual thermodynamic relations, our
choice implies that the thermodynamic quantities of a
damped quantum system like the specific heat or the en-
tropy are actually given by the change of this quantity
when the system is coupled to the environment.

For example, the specific heat of the damped system
is expressed as the difference between the specific heat of
system and bath and the specific heat of the bath alone

C = CS+B − CB. (2)

The specific heat, as well as other thermodynamic quanti-
ties defined in this way, can thus be regarded as a property
of the damped system and, alternatively, as a change in
the properties of the heat bath. The latter point of view
will be taken in Section 4.

For the free damped particle, the reduced partition
function is given by [20]

Z =
√

π

4βEg

∞∏
n=1

νn

νn + γ̂ (νn)
(3)

where β = 1/kBT is proportional to the inverse tem-
perature T and the Matsubara frequencies are given by
νn = 2πn/�β. The Laplace transform γ̂(z) of the damp-
ing kernel will be introduced in detail below in Section 3.
In the prefactor, Eg = �

2π2/2ML2 is the ground state
energy of a particle of mass M in a one-dimensional box
of width L. The finite box is merely needed for regulariza-
tion. For the purpose of this paper, the width L is assumed
to be so large that the discrete level structure becomes
only relevant at temperatures much lower than those of
interest here. All results pertaining to the free damped
particle should be expected to be modified when the tem-
perature is decreased to values of the order of Eg.

For a harmonic oscillator of frequency ω0, the reduced
partition function reads [20]

Z =
1

�βω0

∞∏
n=1

ν2
n

ν2
n + νnγ̂ (νn) + ω2

0

. (4)

The factors in front of the infinite product in equations (3)
and (4) determine the behavior in the classical regime. The
different powers of temperature, 1/2 for the free particle
and 1 for the harmonic oscillator, are a consequence of the
different number of degrees of freedom. For example, they
lead to a high-temperature specific heat of kB/2 for the
free particle and of kB for the harmonic oscillator.

Thus, the limit ω0 → 0 of the harmonic oscillator can-
not lead to the free particle in a smooth way [1]. If we
disregard the difference arising from the classical factor
for the moment, there remains a difference due to the
infinite products in equations (3) and (4). However, the
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infinite products can only differ significantly at low tem-
peratures kBT � �ω0/2π which become arbitrarily small
in the limit ω0 → 0.

Already on the basis of the reduced partition func-
tions (3) and (4) we can expect differences to occur
between the thermodynamic quantities of damped free
particle and damped harmonic oscillator which are solely
determined by their classical expressions. Still, these dif-
ferences can be relevant even deep into the quantum
regime. In addition, below a certain temperature, the dis-
crete energy spectrum of the harmonic oscillator will start
to play a role and, in particular, will ensure the validity
of the third law of thermodynamics, as we shall see.

3 Laplace transform of the damping kernel

The heat bath is described within a Caldeira-Leggett
model where the system is coupled bilinearly through its
position to the positions of a set of harmonic bath os-
cillators [20]. However, we need not be concerned with
the details of this model because the only quantity of
relevance for the system properties is the spectral den-
sity of the system-bath coupling J(ω). It is related to
the Laplace transform of the damping kernel appearing
in equations (3) and (4) by means of

γ̂(z) =
2
πM

∫ ∞

0

dω
J(ω)
ω

z

ω2 + z2
. (5)

To be specific, we choose a spectral density of the form

J(ω) = Mγωs ω2p−s+1
c

(ω2
c + ω2)p (6)

with 0 < s < 2p+ 2. Here, M is the mass associated with
the system degree of freedom and γ determines the damp-
ing strength. At low frequencies, the spectral density (6)
increases proportional to ωs where the exponent s is de-
cisive for the low-temperature thermodynamics. In order
to avoid ultraviolet divergences, we have chosen a gener-
alized Drude-type cutoff represented by the last factor on
the right-hand side of (6). It suppresses the spectral den-
sity of bath oscillators above a frequency scale determined
by the cutoff frequency ωc. Other choices for the cutoff are
possible but are not expected to affect our results in an
important manner.

In reference [9] it was shown for a free damped par-
ticle subject to a bath described by (6), that the spe-
cific heat approaches C/kB = (s − 1)/2 for s ≤ 2 as the
temperature is lowered towards zero. The particular case
s = 1 corresponds to Ohmic damping where the specific
heat of the free damped particle vanishes at zero tempera-
ture. For subohmic damping, s < 1, the specific heat even
tends to a negative value in the low-temperature limit as
long as finite-size effects remain irrelevant. For superohmic
damping with s ≥ 2, the classical value C/kB = 1/2 is ap-
proached in the low-temperature regime.

Employing the relation (5), one finds that for the spec-
tral density (6), the Laplace transform of the damping

kernel can be expressed in terms of a hypergeometric func-
tion [9]. For our purposes, it will be sufficient to consider
integer values for the exponent p appearing in the cut-
off function. Then, the Laplace transform of the damping
kernel can be expressed in terms of a finite sum as

γ̂(z) =
γω2p

c

(ω2
c − z2)p

[
(z/ωc)

s−1

sin
(

πs
2

)

+
1
π

p∑
n=1

(−1)n

n− s
2

B
(

s
2 , p+ 1 − s

2

)
B(n, p− n+ 1)

(
z

ωc

)2n−1
]
.

(7)

The beta function is defined in terms of gamma functions
as B(x, y) = Γ (x)Γ (y)/Γ (x+y). The expression (7) is not
valid for even integer values of s where logarithmic terms
occur.

We will mostly be interested in the Ohmic case s = 1
and the superohmic case s = 3 where analytical results
can be obtained and which allow to discuss the main ther-
modynamic anomalies. For s = 1 and sufficiently strong
damping, the free damped particle has a negative specific
heat at low temperatures [2] while for s = 3 reentrant
classicality is observed [9].

For odd integer s, the expression (7) can be written as

γ̂(z) =
P (z; s, p)
(ωc + z)p

, (8)

where P (z; s, p) is a polynomial in z of order zp−1, in
which the term of zeroth order is absent for s = 3, 5, . . .
Particular cases are

P (z; 1, 1) = γωc

P (z; 1, 2) = γωc

(
ωc +

z

2

)
P (z; 3, 2) = γωc

z

2
. (9)

4 Change of bath density of states

As mentioned above, the specific heat (2) can either be
viewed as specific heat of the system modified by the cou-
pling to the heat bath or as change in the specific heat
of the bath when the system degree of freedom is cou-
pled to it. The latter point of view was taken in refer-
ence [3] where it was shown that the specific heat (2) of
the damped free particle can be expressed in terms of the
change in the bath density of states together with the
well-known expression for the specific heat of a harmonic
oscillator.

The change in the bath density of states is defined as

ξ(ω) =
∑

n

[
δ (ω − ωn) − δ

(
ω − ω0

n

)]
, (10)

where ω0
n are the eigenfrequencies of the bath oscillators in

the absence of the system degree of freedom and ωn are the
frequencies of the eigenmodes of system and bath coupled
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to each other. The density of states ξ(ω) of interest here
should not be confused with the spectral density of the
coupling J(ω) introduced in the context of (5) and (6).

For the harmonic oscillator (osc) and the free par-
ticle (fp) we obtain the change of the bath density of
states as

ξosc(ω) =
1
π

Im
∂ ln [χ̂(−iω)]

∂ω
, (11)

ξfp(ω) =
1
π

Im
∂ ln

[
R̂(−iω)

]
∂ω

, (12)

respectively. Here,

χ̂(z) =
1

z2 + zγ̂(z) + ω2
0

(13)

is the dynamical susceptibility of the damped harmonic
oscillator and

R̂(z) =
1

z + γ̂(z)
(14)

is the dynamical velocity response of the damped free par-
ticle. Further, Im denotes the imaginary part. Observe
that ξosc(ω) concurs with ξfp(ω) in the limit ω0 → 0 for
any non-zero frequency ω.

With the form (8) for γ̂(z), the poles of χ̂(z) are de-
termined by the zeros zi of the polynomial equation

N (z;ω0) ≡
(
z2 + ω2

0

)
(z + ωc)

p + zP (z; s, p) = 0. (15)

Each individual pole of χ̂(z) contributes a Lorentzian to
the change of the bath density of states. Denoting the
real and imaginary part of z by z′ and z′′, respectively, we
then have

ξ(ω) =
1
π

(
−p ωc

ω2 + ω2
c

−
∑

i

z′i
(ω + z′′i )2 + z′2i

)
. (16)

Since equation (15) applies to a damped system, the real
part of each individual zero is negative, z′i < 0. Thus, the
respective Lorentzians give positive contributions to the
density (16).

Consider next equation (15) in the free particle limit
ω0 = 0. With equations (7) and (9) we see that the poly-
nomial N(z; 0) has a simple zero at the origin, z = 0, for
s = 1, and a double zero at the origin for s = 3, 5, . . .
These solutions of equation (15) do not contribute to the
change of the bath density of states (16). As a result,
for any p the density ξfp(ω) has one Lorentzian less com-
pared with ξosc(ω) for s = 1 and two Lorentzians less for
s = 3, 5, . . .

The absence of one or two low-frequency peaks in the
density ξfp(ω) compared to ξosc(ω) will lead to qualitative
differences in the thermodynamic behavior of the damped
free particle and harmonic oscillator. In this respect, the
value of the difference of the integrated densities

ΔΣ(s) ≡ Σosc(s) −Σfp(s)

=
∫ ∞

0

dω [ξosc(ω; s) − ξfp(ω; s)] (17)

plays a crucial role, as we shall see.
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s = 1, p = 2

Fig. 1. Change of the density of bath oscillators ξosc(ω) for a
spectral density (6) characterized by s = 1 and p = 2, damping
constant γ = 5ωc, and an oscillator frequency ω0 = 0.2ωc (solid
line). For comparison, the dashed line gives the density ξfp(ω)
for the free damped particle.

The preceding discussion will now be illustrated by
considering in more detail the important cases s = 1 and 3.
We start with Ohmic damping, s = 1, and a cutoff charac-
terized by p = 1. For the free particle, the non-vanishing
zeros of the equation N(z; 0) = 0, which contribute to the
change of the spectral density ξfp(ω), are

z1,2 = −ωc

2

(
1 ± i

√
4γ
ωc

− 1
)
. (18)

These zeros supply the density ξfp(ω) with two
Lorentzians. Depending on whether the damping strength
γ is smaller or larger than ωc/4, they are centered around
zero frequency or finite frequency with opposite signs,
respectively.

Proceeding to the harmonic oscillator, we account for
a small frequency ω0. In this case, the expressions (18)
receive minor corrections of order ω2

0 . The most impor-
tant change, however, consists in an additional real zero
acquired by N(z;ω0). To leading order in ω0, this zero is
independent of p and located at

z3 = −ω
2
0

γ
. (19)

The Lorentzian associated with the zero (19) is centered
at ω = 0 and becomes a delta function in the limit of van-
ishing oscillator frequency, ω0 → 0. Since this contribution
is missing in the density ξfp(ω), we have the concise exact
relation

ΔΣ(s = 1) =
1
2
. (20)

Figure 1 compares the change of the density of bath os-
cillators for a damped harmonic oscillator of frequency
ω0 = 0.2ωc (solid line) with that for a damped free parti-
cle (dashed line) for an Ohmic spectral density, s = 1. In
contrast to the previous analytical considerations, we now
choose a cutoff characterized by p = 2 in order to facilitate
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comparison with the superohmic case to be discussed be-
low. Apart from the Lorentzian with negative weight given
by the first term in (16), the structure of ξfp(ω) for the
free damped particle is dominated by a peak at finite fre-
quency determined by a solution of N(z; 0) = 0 analogous
to (18).

The main difference between free particle and har-
monic oscillator concerns the behavior at low frequencies.
Here, the real solution (19) of (15) for the damped har-
monic oscillator leads to a peak centered around zero fre-
quency and dominating the low-frequency behavior. As we
will see later on, it is this peak which is responsible for the
main difference in the low-temperature behavior of ther-
modynamic quantities between the free particle and the
harmonic oscillator.

Consider next the case of a superohmic bath with s = 3
and p = 2. With respect to the free damped particle, equa-
tion (15) with ω0 = 0 again yields two nontrivial solutions,

z1,2 = −ωc ± i
√
γωc

2
. (21)

These account for peaks at finite frequencies ±√γωc/2,
very much like in the Ohmic case.

Advancing from the free particle to the harmonic os-
cillator, the originally trivial double zeros z = 0 of the
equation N(z; 0) = 0 turn into a pair of complex solutions
of the pole condition N(z, ω0) = 0 with the leading real
and imaginary parts given by

z3,4 = ±i
ω0

(1 + γ/2ωc)
1/2

− γ

2ω2
c

ω2
0

(1 + γ/2ωc)
2 . (22)

In contrast to the single peak centered at the origin in the
Ohmic case, there are now two low-frequency peaks posi-
tioned symmetrically about the origin with displacement
of the order of ω0. Since these two peaks are missing in
the density ξfp(ω), we now have

ΔΣ(s = 3) = 1. (23)

The change of the density of bath oscillators ξ(ω) for the
superohmic case with s = 3, p = 2, and damping strength
γ = 5ωc is displayed in Figure 2. As in Figure 1, the solid
line corresponds to a damped harmonic oscillator with
ω0 = 0.2ωc while the dashed line refers to a free damped
particle. Comparison of Figures 1 and 2 clearly shows the
difference in the low-frequency behavior of ξosc(ω) for the
damped harmonic oscillator coupled to an Ohmic and a
superohmic heat bath.

A more detailed analysis of the low-frequency peak
for arbitrary exponents s of the spectral density of the
coupling is given in Appendix. In particular, it is shown
there that the results (20) and (23) can be generalized to
arbitrary s as

ΔΣ(s) =

⎧⎨
⎩
s

2
for 0 < s < 2

1 for s ≥ 2.
(24)

We will make use of this result in the discussion of the
specific heat in the next section.
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Fig. 2. Change of the density of bath oscillators ξosc(ω) for a
spectral density (6) characterized by s = 3 and p = 2, damping
constant γ = 5ωc, and an oscillator frequency ω0 = 0.2ωc (solid
line). For comparison, the dashed line gives the density ξfp(ω)
for the free damped particle.

5 Specific heat

Since the densities of state appearing in (10) can be
thought of being constituted by harmonic oscillators, the
specific heat defined according to (2) can be obtained from
the specific heat Cho of a single harmonic oscillator with
frequency ω

Cho = kB

(
�βω

2 sinh (�βω/2)

)2

. (25)

This specific heat vanishes in the zero-temperature limit
and approaches kB in the classical limit. Therefore, we can
generally write

C = C0 +
∫ ∞

0

dω ξ(ω)Cho(ω) (26)

= C∞ +
∫ ∞

0

dω ξ(ω) [Cho(ω) − kB] , (27)

where ξ(ω) can either be the change of the density of
states (11) or (12) for the damped harmonic oscillator
or the free damped particle, respectively. C0 is the spe-
cific heat of the damped system in the zero-temperature
limit while C∞ is its classical value. The two values are
related by

C∞ = C0 + kBΣ, (28)

where Σ denotes the integrated change of the density of
states in agreement with the notation introduced in (17).

For the damped harmonic oscillator, we obtain from
the prefactor in the partition function (4) the classical
value of the specific heat C∞ = kB. Observing that the
defining expression (11) is a partial derivative and that
the real part of γ̂(−iω) is positive, we find for all s the
sum rule

Σosc = 1, (29)



Page 6 of 10

and thus C0 = 0. It is therefore always guaranteed that the
specific heat for the damped harmonic oscillator vanishes
at zero temperature. The specific heat as a function of
temperature can now be expressed as

C =
∫ ∞

0

dω ξosc(ω)Cho(ω). (30)

This result can also be derived by means of C = ∂U/∂T
from the expression for the internal energy obtained by
Ford et al. for a damped harmonic oscillator [21,22].

For the damped free particle, the situation is a bit
more complex. Again the classical value of the specific
heat can be found from the prefactor of the corresponding
partition function (3) and takes the value C∞ = kB/2 as
expected. For the sum rule Σfp(s) we have to distinguish
the cases 0 < s < 2 and s ≥ 2. In the first case, we find
from the expression (12) that the low-frequency behavior
of the change of the bath density of states is dominated
by the first term in (A.1), yielding

Σfp(s) = 1 − s

2
for 0 < s < 2. (31)

In the low-temperature limit, making use of (28) we thus
obtain [9]

C0 =
s− 1

2
for 0 < s < 2, (32)

which can only be valid as long as the size of the spatial re-
gion to which the damped particle is confined is irrelevant.
We conclude from (32), that in the absence of finite-size
effects the specific heat approaches zero only for the spe-
cial case of Ohmic damping. In the second regime, s ≥ 2,
one obtains

Σfp(s) = 0 for s ≥ 2. (33)

Thus, for s ≥ 2 the specific heat tends to its classical
value at very low temperatures. This phenomenon has
been termed “reentrant classicality” [9]. Clearly, the ex-
pressions (29), (31), and (33) are in correspondence with
the former result (24).

In order to express the specific heat of the damped free
particle for arbitrary values of s, (27) is most convenient
and we get [9]

C =
kB

2
+
∫ ∞

0

dωξfp(ω) [Cho(ω) − kB] . (34)

Together with the results presented in Section 4, we can
now discuss how the thermodynamic anomalies of the free
damped particle manifest themselves for the damped har-
monic oscillator. We will mainly focus on the Ohmic en-
vironment (s = 1) and a superohmic environment with
s = 3 for which the changes of the bath density of states
have been shown in Figures 1 and 2, respectively. Figure 3
displays the corresponding specific heats for a damped
harmonic oscillator with frequency ω0 = 0.2ωc (full line)
and a free damped particle (dashed line). The middle and

0
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0 0.2 0.4 0.6 0.8 1

C
/k

B

kBT/h̄ωc

s = 3, p = 2
s = 1, p = 2
s = 0.5, p = 2

Fig. 3. Specific heat of a damped harmonic oscillator with
ω0 = 0.2ωc (solid line) and a free damped particle (dashed
line). For ease of comparison, kB/2 has been added to the spe-
cific heat of the free damped particle, i.e., the respective curves
have been shifted upwards. The three sets correspond to the
bath parameters s = 3, 1, and 0.5 and p = 2 from the upper to
the lower set. The choice of γ = 5ωc implies that the specific
heat of the free damped particle in the Ohmic case, s = 1,
becomes negative at low temperatures.

upper set of curves correspond to s = 1 and s = 3, re-
spectively, and p = 2. The damping constant γ = 5ωc was
chosen sufficiently large that the specific heat for the free
particle becomes negative at low temperatures [9]. The
lower set of curves corresponds to s = 0.5 and p = 2 and
will be discussed at the end of this section. Note that for
better comparison between the specific heat of the har-
monic oscillator and the free particle, we have shifted the
specific heat of the latter by kB/2, so that all curves reach
a value of kB in the high-temperature limit.

Comparing the curves for the harmonic oscillator with
the shifted ones for the free particle, we find that they
agree rather well as long as the temperature does not be-
come too low. This behavior is consistent with what we
had found for the change of the bath density of states
in Figures 1 and 2. The important difference there was
the presence of a low-frequency peak in the case of the
harmonic oscillator. Its weight accounts for the difference
of kB/2 in the classical values for the specific heat for
harmonic oscillator and free particle. The peak is also re-
sponsible for the dramatic increase of the specific heat at
low temperatures visible in Figure 3.

We now take a closer look at how the thermodynamic
anomalies for the free damped particle appear in the spe-
cific heat of the damped harmonic oscillator. We start with
the middle set of curves displayed in Figure 3 correspond-
ing to Ohmic damping. Since the dashed curve has been
shifted upwards by kB/2, both curves actually start at
vanishing specific heat. The dashed curve thus exhibits the
phenomenon of negative specific heat for the free damped
particle. In the case of the damped harmonic oscillator, the
Lorentzian centered at zero frequency shown in Figure 1
increases the specific heat by almost kB/2 at rather low
temperatures. Then, the negative part of the change of the
bath density of states shown in Figure 1 leads to a decrease
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Fig. 4. Building-up of reentrant behavior for a damped har-
monic oscillator with frequency ω0/ωc = 0.2, 0.1, 0.05, 0.02,
0.01, 0.005, and 0.002 decreasing from the lower to the upper
curve. The damping strength is γ = 5ωc and the bath density
of states is characterized by s = 3 and p = 2.

of the specific heat with increasing temperature resulting
in a pronounced dip. At higher temperatures, the classi-
cal value for the specific heat of kB is approached from
below. We can thus conclude that while for the damped
harmonic oscillator, the specific heat cannot become nega-
tive, a dip may appear which has the same physical origin
as the negative specific heat for the free damped particle.
Such a dip in the specific heat can even be found if the
heat bath is constituted by a single harmonic oscillator.
Its origin was traced back to a frequency shift due to the
coupling between system and bath [23]. The approach in
Section 4 provides a generalization from a one-oscillator
bath to a bath consisting of many harmonic oscillators.

Let us now turn to the upper set of curves in Fig-
ure 3 corresponding to a superohmic environment with
s = 3. The dashed curve again displays the specific heat
of the free damped particle shifted upwards by kB/2. As
we can see, the specific heat exhibits reentrant classicality
in the sense that the reduction of the specific heat at in-
termediate temperatures disappears at low temperatures
where the classical high-temperature value is approached.
As already discussed, the specific heat for the damped har-
monic oscillator coincides with the one of the free particle
up to a shift of kB/2 for sufficiently large temperatures. At
lower temperatures, deviations necessarily occur because
the specific heat of the damped harmonic oscillator has to
approach zero in the zero-temperature limit. In order to
verify that in the limit of vanishing oscillator frequency
ω0 → 0 reentrant classicality does occur, we need to con-
sider the specific heat for smaller values of ω0 as depicted
in Figure 4. It can be seen that with decreasing oscillator
frequency ω0, the temperature range in which the specific
heat drops from a value close to kB down to zero becomes
arbitrarily small. In this sense, reentrant classicality can
be observed even for a damped harmonic oscillator.

We close this section by taking a look at the lower
set of curves of Figure 3 corresponding to s = 0.5 and
p = 2. While these curves in the view of the previous

discussion provide no surprises, the curve for the damped
harmonic oscillator supports the result found earlier for
the free damped particle with s < 1 that the specific heat
tends towards a negative value in the low-temperature
limit. Keeping in mind the offset of kB/2, for s = 0.5,
a value of C = −0.25kB is indeed approached for small
temperatures. Very much like the curve for the damped
harmonic oscillator drops down to a vanishing specific heat
at zero temperature, one would expect that accounting for
finite-size effects would lead to a sharp increase of the spe-
cific heat of the damped free particle as zero temperature
is approached.

6 Entropy

Another thermodynamic quantity of interest is the en-
tropy. Our analysis will again be based on the reduced
partition function Z defined in (1). By means of the usual
thermodynamic relations, the entropy is then obtained as

S =
∂

∂T
(kBT ln(Z)) . (35)

In general, this entropy differs from the von Neumann
entropy obtained from the reduced density matrix [24].

A nonmonotonic temperature dependence of the en-
tropy has been discussed e.g. for Kondo systems [4,25],
XY spin chains [6], and two-level fluctuators [7]. In the
context of the Casimir effect, the appearance of a negative
entropy due to a finite zero-frequency electric conductiv-
ity has been the subject of an extensive debate [26–30].
A relation between this problem and the damped free
particle was pointed out [29] and the temperature depen-
dence of the entropy of a damped free particle bears re-
semblance with curves obtained for the Casimir entropy
for real metals [31].

In comparison with the specific heat, putting free
damped particle and damped harmonic oscillator into re-
lation is complicated by the fact that the classical expres-
sions for the entropy differ by a function of temperature.
For the damped harmonic oscillator, one obtains from the
first factor in (4)

Sosc,cl = kB

[
ln
(
kBT

�ω0

)
+ 1
]
. (36)

For the free damped particle, one obtains instead

Sfp,cl = S0 +
kB

2

[
ln
(
kBT

�γ

)
+ 1
]

(37)

where

S0 =
kB

2
ln
(
π

4
�γ

Eg

)
. (38)

It can be shown that S0 is the zero-temperature value of
the entropy of the free damped particle if finite-size effects
are disregarded [29].

For the discussion of the entropy, we focus on an Ohmic
heat bath with standard Drude cutoff, i.e. s = 1 and p = 1.
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In this special case, the reduced partition functions (3)
and (4) can be expressed as

Z = Zcl

∏
n Γ

(
1 − �βz0

n

2π

)

Γ

(
1 +

�βωc

2π

) (39)

where Γ (x) is the gamma function. Zcl is the classical con-
tribution to the reduced partition function, i.e. the factor
in front of the infinite product in (3) and (4). The quan-
tities z0

n are obtained as zeros of the polynomial

N (z;ω0) = z3 + z2ωc + z
(
γωc + ω2

0

)
+ ω2

0ωc (40)

for the damped harmonic oscillator and

1
z
N(z; 0) = z2 + zωc + γωc (41)

for the damped free particle.
Using standard relations from thermodynamics, the

entropy can then be expressed as

S = Scl + kB

[
−f
(

�βωc

2π

)
+
∑

n

f

(
−�βz0

n

2π

)]
, (42)

where Scl for the harmonic oscillator and free particle is
given by (36) and (37), respectively. Furthermore,

f(x) = ln[Γ (1 + x)] − xψ(1 + x) (43)

with the digamma function ψ(x).
Figure 5a displays the entropy for a damped har-

monic oscillator with frequency ω0 = 0.2ωc and damping
strengths γ/ωc = 1, 10, 100, and 1000 increasing from the
lower to the upper curve. The straight-line behavior for
large temperatures on this semilogarithmic plot reflects
the classical behavior (36) of the entropy. For sufficiently
strong damping, a crossover to a logarithmic behavior
characteristic of the classical free particle is observed as
the temperature is lowered. At even smaller temperatures,
the oscillator frequency becomes relevant again to ensure
that the entropy goes to zero in accordance with the third
law of thermodynamics as temperature goes to zero.

Correcting for the difference in the classical behavior
between harmonic oscillator and free particle, as explained
in the context of the reduced partition function in Sec-
tion 2, we can define an entropy

S̃ = Sosc − Sosc,cl + Sfp,cl (44)

which should agree with the entropy of the damped free
particle except for not too low temperatures. This cor-
rection for the classical behavior corresponds to the shift
by kB/2 which we had applied to the specific heat of the
free damped particle in Figure 3. In Figure 5b we have
taken the entropy data displayed in the upper panel to
obtain together with (36) and (37) the entropy S̃ defined
in (44) represented as solid lines. The damping strength
increases here from the upper to the lower curve.

10−4 10−2 100 102
−2

0

2

4

kBT/h̄ωc

S̃
/
k
B

0

2.5

5

7.5

10

S
/
k
B

(a)

(b)

Fig. 5. (a) Entropy of a damped harmonic oscillator with ω0 =
0.2ωc coupled to an Ohmic environment (s = 1) with Drude
cutoff (p = 1) and varying damping strength γ/ωc = 1, 10, 100,
and 1000 from the lower to the upper curve. (b) The solid lines
represent the entropy S̃ defined in (44) and obtained from the
data represented in panel (a) by means of (36) and (37). The
values of the damping strengths coincide with those chosen for
panel (a), but here they increase from the upper to the lower
curve. The dashed lines represent the entropy S−S0 of the free
damped particle disregarding finite-size effects. Because the
entropy constant (38) has been subtracted off all data in this
panel, the dashed lines approach zero in the limit of vanishing
temperature.

For comparison, the dashed lines in Figure 5b show
the results for the entropy of the free damped parti-
cle. The larger the damping strength, the longer S̃ agrees
with the entropy S − S0 of the free particle as the tem-
perature is lowered. Therefore, at intermediate tempera-
tures, a dashed curve is only visible for γ/ωc = 1. Only
for even lower temperatures, the finite frequency of the
oscillator used in determining S̃ becomes relevant and a
dashed curve appears close to the zeroline. Note that in
the curves shown in Figure 5b, the constant (38) has been
subtracted. Its dependence on the damping strength is re-
sponsible for the reversed order of the curves in Figures 5a
and 5b.

It was already shown in reference [29] that the entropy
of the damped free particle at finite temperature can be
smaller than its zero-temperature value as long as finite-
size effects are disregarded. As we can see from Figure 5,
this effect is visible in the temperature dependence of the
entropy of the damped harmonic oscillator in the form of a
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plateau separating the regime dominated by the classical
behavior and the one dominated by the free particle classi-
cal behavior. This thermodynamic scenario complements
the scenario for the dynamics of an overdamped harmonic
oscillator where free particle behavior is observed for not
too long times [32].

The results based on the entropy of the damped har-
monic oscillator shown as solid lines in Figure 5b indicate
how the entropy of a free damped particle constrained to
a finite-size region behaves as a function of temperature.
The entropy can indeed be a nonmonotonic function of
the temperature. However, as the deviations between S̃
and the entropy of the free particle show, there will be a
potentially very small temperature interval on which the
entropy changes its value from S0 to zero as required by
the third law of thermodynamics when zero temperature
is approached.

7 Conclusions

Thermodynamic quantities of a damped free particle can-
not directly be obtained from those of the damped har-
monic oscillator by taking the limit of vanishing oscillator
frequency. Nevertheless, it is possible to identify cor-
respondences between thermodynamic anomalies of the
damped free particle and features in the temperature
dependence of the respective quantities for the damped
harmonic oscillator. Negative specific heats for the free
damped particle correspond to dips in the specific heat
of the damped harmonic oscillator and minima of the
entropy of the free damped particle can be related to
plateaus in the entropy of the damped harmonic oscillator.
For superohmic environments with s ≥ 2, reentrant clas-
sicality can be found both for the damped free particle
and the damped harmonic oscillator when the oscillator
frequency tends to zero.

From the bath point of view, the main difference be-
tween the two damped systems consists in an additional
peak in the change of the bath density of states either
at zero frequency or at a low but finite frequency. This
peak is relevant for the behavior of thermodynamic quan-
tities in the classical regime and continues to describe the
difference between damped free particle and damped har-
monic oscillator down to low temperatures before finite-
size effects set in.

The results for the damped harmonic oscillator show
that the transition to vanishing specific heat and entropy
as temperature goes to zero can occur within a rather
small temperature range. It can be expected that the
regularization of the thermodynamic quantities of a free
damped particle due to confinement to a finite-size region
behaves in a very similar way to ensure the validity of the
third law of thermodynamics.
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this manuscript. UW has received financial support from the
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Appendix: Low-frequency peak
in the change of the bath density
of states for arbitrary s

In Section 4 we have restricted the discussion of the low-
frequency peak in the change of the bath density of states
to the Ohmic case, s = 1, as well as the superohmic case
s = 3. In this Appendix, we provide the generalization to
arbitrary values of s.

To obtain the low-frequency peak of ξosc(ω) for non-
integer values of s, we assume ω � ωc so that we may
truncate the expression (7) to the form

γ̂(z) =
γ

sin
(

πs
2

) ( z

ωc

)s−1

+ μz. (A.1)

Here, μ = ΔM/M is the relative mass contribution of the
bath [9]

μ(s, p) =
2
π

γ

ωc

pB
(

s
2 , p+ 1 − s

2

)
s− 2

. (A.2)

The first term in (A.1) has a branch cut at z = 0.
In the regime 0 < s < 2 and ω � ωc, the first term

in (A.1) is the leading one. A low-frequency approxima-
tion of the dynamical susceptibility of the damped har-
monic oscillator and the dynamical velocity response of
the damped free particle is obtained by inserting this lead-
ing term into (13) and (14), respectively. By means of the
expressions (11) and (12), we find that ξosc(ω) and ξfp(ω)
differ by a low-frequency peak of the form

ξosc(ω) − ξfp(ω) =
s

π

(
ω

ωc

)s−1
Γr

Γ 2
r +

(
ωs

ωs−1
c

+Ωr

)2

(A.3)
with the parameters

Γr =
ω2

0

γ
sin
(πs

2

)2

,

Ωr =
ω2

0

2γ
sin(πs). (A.4)

The expression (A.3) diverges at ω = 0 for subohmic
damping, s < 1, while it goes to zero and displays a
maximum at finite frequency in the superohmic regime
1 < s < 2. The two regimes adjoin at the Ohmic point
s = 1 where ξosc(0)− ξfp(0) = γ/πω2

0 . For the parameters
used in Figure 1 the peak reaches 39.8/ωc and is too high
to be shown.

The expression (A.3) with (A.4) is a reasonable ap-
proximation in the regime 0 < s � 1.5. As s approaches 2,
cut-off dependent contributions, which are absent in (A.4),
become increasingly relevant in the expressions for Γr

and Ωr.



Page 10 of 10

In the superohmic regime s > 2 also the second term
in (A.1) is relevant. Using the form (A.1) for γ̂(z), the
low-frequency behavior of the density is found as

ξosc(ω) − ξfp(ω) =
1
π

∑
r=±1

Γ

(ω − rΩ)2 + Γ 2
. (A.5)

The parameters Γ and Ω read

Γ =
γ

2
(ω0/ωc)

s−1

(1 + μ)(1+s)/2

Ω =
ω0√
1 + μ

, (A.6)

where terms of order (ω0/ωc)2 and (ω0/ωc)s−2 have been
omitted. As s approaches 2 from above, these terms be-
come increasingly important. The expressions (A.6) effec-
tively apply in the regime s � 2.5.

From (A.3) and (A.5), we find as an important result
the expressions given for ΔΣ(s) in (24).
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