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Abstract. We study point-like polarizable particles confined in a 1D very elongated trap within the evanes-
cent field of an optical nano-fiber or nano-structure. When illuminated transversely by coherent light, col-
lective light scattering into propagating fiber modes induces long-range interactions and eventually crys-
tallization of the particles into regular order. We develop a simple and intuitive scattering-matrix based
approach to study these long-range interactions by collective scattering and the resulting light-induced self-
ordering. For few particles we derive explicit conditions for self-consistent stable ordering. In the purely
dispersive limit with negligible back-scattering, we recover the prediction of an equidistant lattice as previ-
ously found for effective dipole-dipole interaction models. We generalize our model to experimentally more
realistic configurations including backscattering, absorption and a directional scattering asymmetry. For
larger particle ensembles the resulting self-consistent particle-field equations can be numerically solved to
study the formation of long-range order and stability limits.

1 Introduction

Optical control and manipulation of atoms and nano-
particles in free space has seen tremendous progress in
the past decade and allows for cooling and trapping in
designable optical traps of almost any shape. In particu-
lar, precise periodic optical potentials can be generated,
which allow one to study important solid state lattice
Hamiltonians. In contrast to conventional solids, however,
the spatial order and lattice geometry is perfect and fixed
by the external lasers. Any back-action of the particles
on the light and corresponding long-range interactions are
generally neglected, but would lead to very interesting new
dynamical effects [1,2].

In an important step Rauschenbeutel and coworkers
managed to trap atoms in an array of optical dipole traps
generated by two-colour evanescent light fields alongside
a tapered optical fiber [3], where the back-action of even
a single atom on the propagating fiber field is surpris-
ingly strong [4]. This setup was improved with higher con-
trol and coupling by other groups recently [5,6]. With the
atoms firmly trapped within the evanescent modes, field
mediated atom-atom interaction and collective coupling
to the light modes play a decisive role in this setup [7]. In-
terestingly trapping, ordering via optical binding and col-
lective forces on nano-particles trapped by optical nano-
fibers have also been recently observed using only a single
laser [8].
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For cold particles in optical resonators transversely il-
luminated by lasers it is well established by now that a
phase transition from a homogeneous to regular order ap-
pears at a sufficiently strong pump intensity and suitable
detunings between laser and cavity field [9,10]. In this
work we will explore self-ordering effects of such a trans-
verse laser beams on atoms trapped near a nano-fiber.

As a quite surprising generalization Chang and
coworkers predicted in a recent theoretical model that
dipole-dipole interaction via the fiber mode can induce
a stable regular order and nontrivial long-range correla-
tions in such a nano-fiber geometry [11]. In a closely re-
lated approach, we have theoretically studied a general-
ized model of this setup based on the effective coupled
Vlasov equation for the atomic phase space distribution
and the field distribution in the fiber [12]. This model pre-
dicted threshold conditions for the appearance and stabil-
ity of light scattering induced density modulations of the
particle distribution at finite temperature.

Depending on pump strength and particle number sev-
eral nontrivial steady states appear, in which multiple
light scattering by the particles confines the light modes.
At the same time the density modulations of the particle
distribution is sustained by the light in the fiber.

In this work we study the microscopic origin and cou-
pling dynamics of this dynamic self-ordering using a scat-
tering formalism to calculate the field amplitudes and
forces acting on each individual particle. While this ap-
proach is less suitable to study thermodynamic properties
of large ensembles, it gives a very intuitive picture of the
underlying physics and can be easily applied to a variety
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Fig. 1. A 1D array of point particles scattering light in and
out of an optical nano-structure can be modeled as a collection
of beam splitters interacting with a plane wave.

of different situations from single atoms or molecules to
larger nano-particles trapped in vacuum or in a viscous
transparent medium. Here we start from explicitly ana-
lytically solvable few particle cases, where the underlying
microscopic physical processes can be clearly identified.
For larger particle-numbers numerical simulations of the
self-ordering process and the appearance of order can be
studied in detail. Generalizations to directionally biased
scattering into the fiber and transverse multimode fibers
are easily possible within this approach.

In the following, after introducing our model in terms
of a simple self-consistent scattering-matrix approach, we
study the case of a single particle subject to external pump
and the fields induced by neighboring scatterers and de-
rive the conditions for a stable equilibrium point. Next
we consider two and three particle configurations, where
fairly simple analytical results still can be obtained and
the essential physics of trapping and self-ordering can be
seen in detail. Numerical simulations of particle motion for
larger ensembles then allow us to find stability conditions
in the last part of this work.

2 Scattering model of particle-field dynamics

Let us consider N polarizable particles confined in a 1D
potential parallel to a tapered fiber as depicted in Fig-
ure 1. Via coupling to the evanescent field of the fiber
mode, the particles can scatter photons into and out of
the two propagating light field modes [11–13]. The fiber
modes can be described by two counter-propagating fields
of frequency ω = kc. For a particle at position xj the fields
left and right of this particle shall be written as:

El(x) = Aj exp (−ik(x − xj)) + Bj exp (ik(x − xj)) ,

Er(x) = Cj exp (−ik(x − xj)) + Dj exp (ik(x − xj)) , (1)

for j = 1, . . . , N . The perturbation induced by the par-
ticles induces scattering between the incoming fields Bj

and Cj and outgoing fields Aj = rBj + tCj and Dj =
tBj + rCj , the particle therefore acts as an effective
beam splitter with prescribed reflection and transmission
coefficients r and t.

In addition each particle scatters light from a trans-
verse pump laser into the fiber modes. The exact treat-
ment of how light is scattered into a nano-fiber by trans-
versely illuminated atoms is very complex and depends on
various parameters such as the polarization of the modes
or particle properties [13]. Here we make the simplifying
assumption that the scattering process can be modeled by
a single effective amplitude η describing the amplitude of
the field scattered into the fiber mode. We assume that it
is the same for all N particles, i.e. we have an ideal plane
wave pump field and all particles are at the same distance
from the fiber. From the perspective of the fiber modes
these particles act as sources as well as beam splitters
coupling forward and backward propagating modes. In the
most general case we allow for asymmetric splitting of the
scattering amplitude into the two fiber directions [14] and
therefore we write for the field amplitudes

Aj = rBj + tCj + αη, Dj = tBj + rCj + βη, (2)

for all j = 1, . . . , N and with α2 + β2 = 1, α,
β ∈ R≥0. In analogy to the scattering model for opti-
cal lattices [2,15,16] we can write a generalized scatter-
ing matrix for a single particle with coupling constant
ζ = kα̃/(2ε0). Here the effective polarizability α̃ scales
the interaction strength between the particle and the fiber
mode.

As has been first proposed by Deutsch et al. in ref-
erence [1], in an effectively 1D system the light propaga-
tion through a very thin slab or a single scatterer can be
described by complex transmission and reflection coeffi-
cients. These transmission and reflection coefficients are
directly connected to ζ via

t = 1/(1 − iζ), and r = iζ/(1 − iζ), (3)

respectively. This connection and typical magnitudes of
this parameter for atoms in optical lattices have been ex-
tensively discussed in an appendix in reference [2] and will
not be repeated here. While the magnitude of ζ is not lim-
ited in principle it is typically much less than unity. The
imaginary part �(ζ) is linked to absorption losses and is
always positive. Nevertheless, dense collections of atoms
or trapped nano-beads can reach larger values of ζ [8,17].
Mathematically this can lead to rather peculiar features
such as an increase of the effective reflectivity coefficient
with growing imaginary part of ζ. Some interesting con-
sequences of this behavior get visible in our numerical ex-
amples later, where we chose rather large values of ζ for
demonstration purposes.

The coupling between the amplitudes left and right
of a particle can then be expressed using the following
scattering matrix
⎛
⎝

Aj

Bj

η

⎞
⎠ =

1
t

⎛
⎝

t2 − r2 r αt − βr
−r 1 −β
0 0 t

⎞
⎠
⎛
⎝

Cj

Dj

η

⎞
⎠

=

⎛
⎝

1 + iζ iζ α − iβζ
−iζ 1 − iζ β(iζ − 1)
0 0 1

⎞
⎠
⎛
⎝

Cj

Dj

η

⎞
⎠ , (4)
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where Bj , Cj , η are the incoming fields allowing to deter-
mine the outgoing fields Aj , Dj (cf. Fig. 1). These then in
turn will be used as inputs to neighbouring scatterers as:

Cj−1 = Aj exp (−ik (xj − xj−1))

and

Dj−1 = Bj exp (ik (xj − xj−1)) .

Note that we recover the well established transfer-matrix
model [2,15,16,18] for an array of particles interacting
with plane waves, if we turn off the transverse pump by
setting η = 0.

In this work we are interested in the mechanical ef-
fects of the transverse laser beam on the motion of a one-
dimensional chain of beam splitters along the fiber. The
force arises from the scattering of the transverse field into
the fiber, which will interfere with existing fields and in
particular with the light scattered by other particles. This
gives versatile dynamics along the x-direction including a
new kind of optical binding and self-ordering.

In addition the pump laser can act in the transverse
direction as well and modify the distance between the par-
ticles and the fiber. Here we assume that this has only a
minor effect on the trap.

Using simple arguments based on the Maxwell stress
tensor, the time averaged force along the x-axis on the jth
particle is given by [2]

Fj =
ε0
2
(|Aj |2 + |Bj |2 − |Cj |2 − |Dj |2

)
. (5)

This simple expression for the local force tends to shroud
the inherent complexity of this system. We will start to
examine this rich behavior by a detailed study of the
forces on a single particle interacting with longitudinal
and transverse light-fields.

3 Scattering force on a single particle

As presented above a single particle acts as a scatterer,
which couples the left and right propagating modes and in
addition coherently scatters pump light into these modes.
The local field amplitudes B1 and C1 at x = x1 are
determined by intensities and phases of the longitudinal
beams via

B1 =
√

2Il/(cε0) exp(ikx), C1 =
√

2Ir/(cε0) exp(−ikx)

and the scattering amplitude originating from the
transverse pump is given by:

η =
√

2Iη/(cε0) exp(−iφ),

with a factor φ describing the phase difference between
the longitudinal and the effective transverse pump fields.
Using equation (5), the most general expression for the

force in terms of the light field intensities then reads

F =
(Il − Ir)

(
|ζ|2 + ζi

)
− 2

√
IlIrζr sin(2kx)

c
2 |1 − iζ|2

+
Iη

c
(α2 − β2)

+
2
√

IηIl

c
�
(

iαζ − β

1 − iζ
ei(kx+φ)

)

+
2
√

IηIr

c
�
(

α − iβζ

1 − iζ
e−i(kx−φ)

)
, (6)

with ζr = �(ζ) and ζi = �(ζ). The first line represents
the optical lattice generated by the counter propagating
fields in the fiber [2] and the second line represents the
radiation pressure force induced by asymmetric scattering
of the transverse pump light into the fiber if α �= β. The
last two lines emerge from interference between scattered
and longitudinal fields and are of central importance for
long range interactions and self-ordering.

Equation (6) already contains all parameters that de-
termine the dynamics in this surprisingly complex system:
the intensities of the longitudinal and transverse pump
beams, Il, Ir and Iη; the relative phase between those
beams φ, the effective coupling between the particles and
the modes traveling along the nanofiber ζ and the coeffi-
cients giving the scattering asymmetry, α and β [14].

For symmetric scattering α = β = 1/
√

2 we have:

F =
(Il − Ir)

(
|ζ|2 + ζi

)
− 2

√
IlIrζr sin(2kx)

c
2 |1 − iζ|2

+

√
2Iη

c

(√
Ir cos(kx − φ) −

√
Il cos(kx + φ)

)
, (7)

which for equally strong left and right propagating fields
Ir = Il = I reduces to:

F =
2 sin(kx)

c

(−4Iζr cos(kx)
|1 − iζ|2 +

√
2IηI sin(φ)

)
. (8)

This form clearly separates the lattice and transverse
pump contribution. Obviously without transverse pump,
Iη = 0, we get a simple standing wave lattice with peri-
odicity λ/2. Adding a transverse pump Iη we observe a
transition from the λ/2-periodicity to λ-periodicity as for
cavity induced self-ordering [9]. A finite light absorption
rate is parametrized by the imaginary part of ζ and adds
a radiation pressure force shifting the lattice constant like
in a conventional optical lattice (see Fig. 5 in Ref. [2]).
Note that the force on a single particle vanishes without
propagating longitudinal fields Il = Ir = 0.

The typical spatial dependence of the force presented
in Figure 2 for different parameter sets exhibits one or
several stable equilibrium positions, which correspond to
zeros of the force with negative gradient. Here they can
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Fig. 2. Force on a single beam splitter as function of the po-
sition of the beam splitter x for α = β and φ = 0. The blue
line corresponds to Il = Ir = Iη and ζ = 1/9, the red line to
Il = 0, Ir = Iη and ζ = 1/9, the green line to Il = 2Iη, Ir = Iη

and ζ = 1/9 and the violet line to Il = 2Iη, Ir = Iη and
ζ = (1 + i)/9. Stable trapping points with F = 0 are marked
by red dots, unstable by green dots.

be explicitly determined for Il = Ir = I as:

kx =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2nπ, if sin(φ) < 2
√

2Iζr√
Iη |1−iζ|2 ,

(2n + 1)π, if sin(φ) > −2
√

2Iζr√
Iη |1−iζ|2 ,

±arccos
(√

Iη

2I
|1−iζ|2

2ζr
sin(φ)

)
+ 2nπ, if ζr < 0.

(9)

Note that for symmetric pump Ir = Il and φ = 0 as for
the blue line in Figure 2, the second line of equation (7)
for the force vanishes as for Iη = 0 and we get a sim-
ple standing wave lattice with λ/2-periodicity. Choosing
Il �= Ir one eventually loses this periodicity and only one
stable position per wavelength survives. Adding an imag-
inary part of ζ shifts the force zeros towards the weaker
source.

The solutions given by the last line of equation (9)
only exist for | sin(φ)| ≤ 2

√
2Iζr/(

√
Iη|1 − iζ|2). Typical

examples for the dependence of the force on the particle
on the phase of the pump are shown in Figure 3. Choosing
ζr > 0 we see that the first stationary position at x = 0
(or x = λ) is only stable as long as additional unstable
zeros at:

kx = ±arccos
(√

Iη/(2I)
|1 − iζ|2

2ζr
sin(φ)

)
+ 2nπ (10)

(Eq. (9), condition 3) exist too. In general one can get even
more zero-force points per wavelength for larger ranges of
Iη, I, φ for ζ as depicted in the example of Figure 4.

3.1 Stability of the outermost particle in a chain

Let us discuss here another special case, which will later
be important for the multi-particle case. In a setup where
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Fig. 3. Force on a single beam splitter for Il = Ir = 8Iη,
ζ = 1/9 and α = β. The blue line corresponds to φ = 0, the
red line to φ = π/4 and the green line to φ = π/2. We see that
the particle trap positions at integer multiples of λ become
unstable for φ > π/4 (cf. Eq. (9)).
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Fig. 4. Dependence of the zero force position x for varying
pump right field power Ir for α = β, ζ = 1/9 and Il = 8Iη.
The blue line corresponds to φ = 0, the red line to φ = π/4
and the green line to φ = π/2. The solid lines show the stable
zero-points, while the dashed lines show the unstable ones.
Comparing this figure with Figure 3 we see that the figures
correspond to each other at Ir = 8Iη. It is interesting to see
that for some φ’s new zero-points appear after exceeding a
special threshold.

only a transverse pump laser is present all propagating
photons originate from scattering by the particles. Hence
the outermost particles will only be exposed to incoming
light from one side. The impinging amplitude then corre-
sponds to the total light scattered by all other particles
into its direction. As any spatial configuration can only be
stable, when the outermost particle is also stationary, it is
useful to study the stability conditions for such single-side
illumination first.
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Fig. 5. Force on a single particle illuminated just from the left
as Il = Iη and Ir = 0; φ = 0, α = β. The blue line corresponds
to ζ = 1/9 and the red line to ζ = 1/9 + i/2. The red points
are stable and the green ones not. Since Ir < Ir and ζi �= 0 we
see a radiation pressure force pushing the particle towards the
right.

Setting Ir = 0 in equation (7) the force on the
rightmost particle reads:

F =
1
c

⎛
⎝2Il

(
|ζ|2 + ζi

)

|1 − iζ|2 −√2IηIl cos(kx + φ)

⎞
⎠ (11)

with ζi = �(ζ). We see that the interference term in this
equation can compensate for the radiation pressure gener-
ated by the incoming light from the left. Indeed the total
force vanishes for

kx = −arccos

(√
2(ζi + |ζ|2)
|1 − iζ|2

√
Il

Iη

)
− φ + 2nπ, n ∈ N.

(12)
Examining this expression we can see that we can only
find a zero force position, if Il, Iη and ζ fulfil:

Iη

Il
≥
(√

2(ζi + |ζ|2)
|1 − iζ|2

)2

, (13)

i.e. Iη/Il has to exceed a certain threshold. As Il is pro-
portional to Iη and depends on the particle number, this
condition eventually limits the maximal particle number
which can form a stable chain. Unfortunately the explicit
expressions for Il are rather complex, so that a simple sta-
bility criterion is difficult to obtain. Nevertheless, as de-
picted in Figure 5, we find stable zero force positions for
the last particles even when absorption strongly dominates
scattering (red dot on red curve).

4 Collective scattering and forces
for several particles

For N > 1 particles the motion is conveniently split into
center of mass (CMS) and relative motion. Hence besides

completely stationary solutions, where all particles are at
rest, we can find cases of an equal nonzero force on all
particles, so that they move together at a fixed distance.
The condition of a stationary center of mass can be sim-
ply expressed in terms of the outermost field amplitudes
to give:

Ftot =
ε0
2
(|A1|2 + |B1|2 − |CN |2 − |DN |2) = 0, (14)

for any particle number N .

4.1 Two particles

Let us first look at two particles at a given distance d with-
out injected fields Il = Ir = 0 and symmetric scattering
α = β = 1/

√
2. Here the light scattered into the fiber by

one particle only interferes with the scattered light of the
second particle. Evaluating the general equation (5) thus
leads to a distance-dependent force, which for constructive
interference induces a strongly attractive force and gives a
repulsive term for destructive interference. Very close par-
ticles thus attract each other, while they repel at about
half wavelength distance. Due to the negligible damping
of the light propagation in the fiber this behavior is peri-
odically repeated over several wavelengths. To enable the
comparison of the cases with more particles we normalize
Iηtot = NIη.

Explicitly for the total outgoing light intensity at both
sides we get the superposition of light scattered by the two
point particles exhibiting a periodic interference behavior

Iol = Ior = 2Iη

∣∣∣∣∣
(1 − iζ) cos(kd

2 )
(1 − 2iζ) cos(kd

2 ) − i sin(kd
2 )

∣∣∣∣∣
2

, (15)

with Iol = cε0|A1|2/2 and Ior = cε0|D2|2/2. Symmetry
here immediately implies equal forces of opposite sign on
the two scatterers (i.e. F1 = −F2) with

F1 =
Iη|1 − iζ|2 cos(kd)

c
(
4 (|ζ|2 + ζi) cos2(kd

2 ) + 2ζr sin(kd) + 1
) . (16)

Stable distances with zero force on both particles are thus
found at:

d =
(

3
4

+ n

)
λ (17)

for n ∈ N. Figure 6 shows some examples for the force
on two particles for different parameters. Configurations
are stable, if the derivative of the force with respect to dis-
tance on the first beam splitter is positive and negative on
the right beam splitter. Note that without injected lattice
we get a stable distance of d = 3λ/4 almost independent of
the imaginary part of ζ. This is exactly the distance where
the scattered fields from the two particles are 90 degrees
out of phase and thus do not interfere. This distance is
very different to cavity induced self-ordering, where max-
imal collective scattering at exactly wavelength distance
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Fig. 6. Forces on two beam splitters as function of distance d
for α = β and φ = 0. The solid line shows the force on the first
beam splitter and the dashed line the force on the second one.
The red points are stable equilibria and the green ones not.
(a) The blue line corresponds to Il = Ir = 0 and ζ = 1/9, the
red line to Il = Ir = 0 and ζ = 1/9+ i/2. Because of symmetry
F1 = −F2. (b) The blue line corresponds to Il = 3Iη, Ir = Iη

and ζ = 1/9, the red line to Il = 0, Ir = Iη and ζ = 1/9. Here
the parameters are chosen to get zero center of mass force at
the stationary distance.

leads to the most stable configurations [9]. Adding extra
fields forming an optical lattice via field injection through
the fiber, the stationary distance of the particles changes
and now depends more strongly on absorption as depicted
in Figure 6b.

Very interesting physics can also be seen in the time
evolution of the system, when we allow the particles to
dynamically adjust according to the local forces by solv-
ing the coupled equations of fields and particle motion.
We will introduce these equations in more detail later in
the many particle section in equation (23). In the sim-
plest nontrivial case of two particles and Il = Ir = 0,
we can use this to see how the system finds a stationary,
self-consistent equilibrium. A typical example is shown in
Figure 7a, where starting from an unstable zero force dis-
tance d = λ/4 the particles adjust to the above calculated
equilibrium at d = 3λ/4. Interestingly in the final config-
uration they are not simply trapped near local intensity
maxima but form a self-ordered optical resonator with at
intensity maximum at its center.

A very similar behavior is found in Figure 7b where we
consider strongly absorbing particles. Again in the station-
ary long time limit we find almost the same equilibrium
positions, but with less pronounced light confinement.
Note that in an intermediate phase we even get a higher
trapped light field than for the non-absorptive case above.
This peculiarity can be traced back to the reflectivity en-
hancement through the larger magnitude of ζ originating
from the imaginary part. At this distance the particles
are pushed outwards by the confined light between them
as was previously noted in reference [19]. Only at larger
distance this outward pushing force is compensated by the

Fig. 7. Trajectories and intensities of two beam splitters for
Il = Ir = 0, α = β and φ = 0 with initial condition d = λ/4.
(a) shows the trajectories for ζ = 1/9 and (b) for ζ = 1/9+i/2.
As calculated in equation (17), the final distance between the
particles is d = 3λ/4.

dipole force and the system gets stationary. This behavior
reminds of self-ordered solutions found in the continuous
Vlasov model for an ultracold gas in the evanescent fiber
field [12].

4.2 Three particles

Let us now add a third particle but still no injected fields
Il = Ir = 0. While the general expressions for fields and
forces can still be found explicitly, their form is already so
complicated that it is not instructive to print them here.
Fortunately for a symmetric configuration d1 = d2 = d
and neglecting absorption, ζ ∈ R, we still get the outgoing
field in an instructive and useful form:

Iol = Ior =
Iη(1 + ζ2)

2

×
∣∣∣∣

1 + 2 cos(kd) − 2ζ sin(kd)
(i + 3ζ) cos(kd) + (1 − ζ(i + 2ζ)) sin(kd)

∣∣∣∣
2

. (18)
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Fig. 8. Force on three particles as function of the distances
between the beam splitters d = d1 = d2 for Il = Ir = 0,
α = β and φ = 0. The solid line shows the force on the first
beam splitter and the dashed line the force on the third one.
The force on the second beam splitter is zero. The blue line
corresponds to ζ = 1/9, the red line to ζ = (1 + i)/9 and the
green line to ζ = 1/9 + i/2. The red circles are stable points
and the green ones not.

For small ζ this reduces to:

I 	 Iη/6 |1 + 2 cos(kd)|2

which can lead up to 9 times stronger collective scattering
than for a single particle. From symmetry considerations
we again see that F2 = 0 and the remaining forces sum
up to zero (Fig. 8) with

F1 =−F3 	 Iη

c
(cos(kd) + cos(2kd)

−ζ (2 sin(2kd) + sin(3kd) + sin(4kd))) + O[ζ]2.
(19)

In this symmetric case we only have stable configurations
if d1 = d2 ≈ 4λ/5, which again are very insensitive to
absorptive losses in the particles as shown in Figure 9.

A priori one might assume that also asymmetric solu-
tions with different particle distances d1 �= d2 are possible.
This can be checked by simply drawing zero force lines
for all three particles as function of d1 and d2. Common
intersections of all three lines then denote stationary con-
figurations as shown in Figure 9. Their stability can be
checked from the corresponding derivatives of the forces.
We see that in the chosen examples stable equilibria only
appear if d1 = d2, at least for symmetric scattering α = β.

5 Dynamics of larger particle ensembles

In principle, adding more scatterers is straightforward in
our model: we simply have to multiply by one more scat-
tering matrix and find the solution of the corresponding
set of linear equations for the field amplitudes. Explicit
analytic results for the fields and forces can thus still be

)b)a

0 λ
4

λ
2

3λ
4

λ

Distance d1

0

λ
4

λ
2

3λ
4

λ

D
is

ta
nc

e
d
2

0 λ
4

λ
2

3λ
4

λ

0

λ
4

λ
2

3λ
4

λ

Fig. 9. Contour lines of zero force F1 (blue), F2 (red) and F3

(green) as function of the distance between the beam splitters
one and two d1 and the beam splitters two and three d2 for
Il = Ir = 0, α = β and φ = 0. The red points show stable
points and the green ones unstable equilibria. (a) ζ = 1/9,
(b) ζ = 1/9+i/2. It is interesting to see that one of the unstable
zero points vanishes when we add an imaginary part to ζ.

found, but these look surprisingly complex even for fairly
small particle numbers. Finding the common zeros for all
forces then is virtually impossible and we need to make
rather drastic simplifications to arrive at useful analytical
results.

5.1 Very weak coupling limit ζ = 0

In their pioneering work, Chang and coworkers have found
an elegant and surprisingly simple general result for two-
level atoms in the weak excitation regime [17]. Here the
induced dipoles interacting over infinite range via the fiber
mode simply have to be arranged in a way such that the
sum of the dipole couplings vanishes. This leads to a sim-
ple equidistant lattice configuration. In our model we can
reproduce a similar limiting case by neglecting the cou-
pling parameter ζ (i.e. setting ζ = 0), while still keeping
nonzero scattering into the fiber η �= 0. As both quantities
in principle are proportional to the linear polarizability of
the particle this is not possible in a strict sense, but a small
η can be compensated by using a much stronger pump
laser, such that the ratio of the two scattering parameters
(ζ, η) can be tuned to some extent.

For ζ = 0 the equations considerably simplify and in
particular if we assume equidistant ordering d1 = d2 =
. . . = dN−1 = d the total intensities scattered into the
fiber finally read

Iol = Ior =
Iη

2

(
sin(Nkd

2 )
sin(kd

2 )

)2

. (20)

Also the force on the mth particle of N beam-splitters can
be obtained in closed form to give:

Fm = −Iη cos (Nkd/2) sin ((2m − N − 1)kd/2)
c sin (kd/2)

. (21)
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Fig. 10. Force on the first of two (blue) and three (red) parti-
cles for vanishing ζ = 0 and symmetric scattering α = β. Red
dots denote stable equilibrium points. It confirms that the sta-
ble points are at d = (2N − 1)/(2N).
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Fig. 11. Stable distance as function of number of beam split-
ters N , numerically solved with initial condition d0 = λ for
ζ = 0, Il = Ir = 0 and α = β.

The zeros of the force are then given by:

d =
2n − 1

2N
λ, with n ∈ N (22)

predicting a regular, equally spaced distribution of the
scatterers. This agrees well with the previous prediction
but one still has to check for stability of this solutions. As
symmetry again enforces a stationary center of mass, we
simply look at the leftmost of the N particles and try to
identify its stable positions. In Figure 10 we plot the force
on the leftmost of two and three particles as a function
of distance. We see that the force vanishes at the points
predicted above but only few zeros correspond to stable
equilibria. Indeed we have to choose n = N to guarantee
stability.

This behavior is confirmed by a numerical solution for
the stable configuration closest to d = λ as shown in Fig-
ure 11 depicting the stable distance of the equally spaced
distribution as a function of the number of scatterers con-
firming the rule found above d = 2N−1

2N λ. This behavior

0

2

4

6

8

10

0 1λ 2λ 3λ 4λ 5λ 6λ 7λ 8λ

T
im

e
t

[a
rb

.
un

it
s]

Position xi

In
te

ns
it
y

I
[in

un
it

s
of

I η
t
o

t
]

0

0.05

0.1

0.15

0.2

0.25

0.3

Fig. 12. Trajectories of ten beam splitters for Il = Ir = 0, α =
β and φ = 0 with initial condition d1 = d2 = . . . = d9 = 0.8λ
and ζ = (1 + i)/9. Note that the outermost particles are not
trapped at intensity nodes or antinodes as would be expected
from a conventional lattice.

relates to the fact that in this limit every particle interacts
equally strong with all the other particles via the unper-
turbed fiber mode. In the next section (see Fig. 13) we
will show how this behavior changes in the limit of small
but finite ζ including absorption.

5.2 Numerical simulations for large ensembles

While the general equations for the field evolution and
forces can be written down fairly easily even for larger par-
ticle numbers, their solution gets very complex and hard
to interpret even for small particle numbers. Nevertheless
a numerical solution of the self-consistent dynamical New-
tonian equations of motion for the particles with mass m
and friction coefficient μ can be easily performed until an
equilibrium configuration is reached. We start from the
classical equations of motions including some prescribed
damping mẍj = −μẋj +Fj(x1, . . . , xN ), where the force is
determined from the momentary field configuration. In an
over-damped limit the velocity is determined by the force
over friction ratio, so that we have:

ẋj =
Fj(x1, . . . , xN )

μ
. (23)

As the field instantaneously follows the particle distribu-
tion, the system can be expected to eventually evolve to-
wards a self-consisted equilibrium position. In Figure 12
this is demonstrated at the example of ten particles ini-
tially prepared in an equidistant chain of distance d =
0.8λ. Once the self-consistent dynamics are started, the
particles redistribute to a new stable order with varying
distance. Interestingly we again see that the outer par-
ticles are not drawn towards high-field intensity regions
but form a kind of resonator confining a great deal of the
scattered light close to the particles. By maintaining a
somewhat smaller separation than the inner particles, the
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Fig. 13. Stable distance d1 (a) and dN/2 for an even number,
respectively d(N+1)/2 for an odd number of particles (b) as
function of number of beam splitters N , numerically solved
with initial condition d0 = λ. The red line corresponds to ζ =
1/9, the blue line to ζ = i/2 and the green line to ζ = 1/9+i/2.

outer particles act as reflectors, which form a more con-
ventional optical lattice trapping the inner particles close
to field maxima.

Changing the number of particles leads to a very simi-
lar behavior with slightly modified distances. In Figure 13
we plot the dependence of the distance of the outermost
two particles and two particles in the middle of the sta-
tionary lattice as function of particle number. While the
distance first grows with particle number, it reaches a sta-
tionary value with an effective lattice constant below one
wavelength λ for more than ten particles in the chain. Sur-
prisingly even for the purely absorptive case with imag-
inary ζ a stable stationary order can be induced by the
transverse pump light.

Hence we see that stable self-ordered lattices can form
for large particle numbers, as long as some friction is
present. This strongly resembles the results obtained via
the Vlasov approach presented in reference [12]. Note that
at the center we almost get a wavelength spaced optical
lattice with particles trapped at field maxima, while the
outer particles attain a smaller spacing forming an effec-
tive mirror for the light. The system hence acts like a
self-forming optical resonator trapping the scattered light
in its center. Such a configuration tends to minimize the
combined total potential energy of all the particles [19].

To emphasize the difference between a typical 1D-
lattice and a lattice with transverse pump we present the
effects of a sudden switch on of the transverse coupling Iη

in Figure 14. There we initially inject a common stand-
ing wave into the fiber to prepare an optical lattice. The
transverse pump laser is then used to induce additional
non-local couplings between the particles. Clearly, when
we switch on Iη, the particles start to interact differently
and re-order into a new equilibrium. Interestingly, again
the reordering tends to have more light confined within the
structure via multiple scattering while the outer particles
no longer rest at positions of maximum intensity.
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Fig. 14. Trajectories of ten beam splitters for Il = Ir = I ,
ζ = 1/9, α = β and φ = 0 with initial condition d1 = d2 =
. . . = d9 = 0.8λ. For the first three time-steps Iηtot = 0, then
Iηtot = I . We see that the particles order in a new stable
configuration when we switch on the transverse pump at t = 3.
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Fig. 15. Trajectories of ten beam splitters for Il = Ir = I ,
ζ = 1/9 + i/18, α = β and φ = 0 with initial condition d1 =
d2 = . . . = d9 = 0.8λ. For the first five time-steps Iηtot = 0,
then Iηtot = I . The particle trajectories begin to cross and
we see that the configuration gets unstable once the transvere
pump is switched on.

In some cases, however, in particular for a complex ζ
involving absorption, the effective interaction can be too
strong to generate a new order and the lattice disintegrates
after switching the transverse pump on even in the over-
damped regime. Such a behavior as shown in Figure 15
was also found for very large conventional optical lattices
and clearly demonstrates that we do not have conservative
dynamics here [2].

6 Selfordering with asymmetric directional
scattering amplitues α �= β

Fiber and pump laser in our model constitute a transla-
tional invariant system with two equivalent propagation
directions and scattering between forward and backward
direction will be symmetric at first glance. However, using
transverse pump with a polarization, which is not aligned
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perpendicular to the fiber, this symmetry is broken. As
recently outlined in reference [14] in some cases this in-
troduces directional scattering, an effect which can be
magnified close to the fiber surface. To effectively model
this behavior for general directions of pump polariza-
tion, we parametrize the part of η reflected to the left as
α = sin(θ) and the one reflected to the right β = cos(θ),
so that α2 + β2 = 1. In all previous examples we had
α = β = 1/

√
2 or θ = π/4. In the following we will shortly

discuss the consequences of such an asymmetry on collec-
tive scattering, forces and particle ordering in some special
examples.

For a single beam splitter the outgoing field intensities
then change to:

Iol =

∣∣∣∣∣
(√

Ir +
√

Ile
i(φ+2kx)iζ

)
+ eikx

√
Iη(1 − iζ) sin(θ)

1 − iζ

∣∣∣∣∣
2

,

Ior =

∣∣∣∣∣
(√

Ile
i(φ+2kx) +

√
Iriζ

)
+ eikx

√
Iη(1 − iζ) cos(θ)

1 − iζ

∣∣∣∣∣
2

.

(24)

From equation (6) we see that a single particle is always
pushed in one direction if Ir = Il = 0. But a longitudinal
pump or the presence of other beam splitters allows one
to find stable configurations even if α �= β. For different
asymmetry θ the number of zero points per wavelength
can change.

Obviously such a scattering asymmetry also changes
the interaction properties in the many particle case. This
has the important consequence that the forces on two
beam splitters are not always of equal magnitude and typ-
ically a final force on the center of mass remains. Never-
theless it can lead to a stable distance of two beam split-
ters, where the force on the two particles is equal. This
generates thus a propulsion of a pair of particles keep-
ing an equal distance similar to experiments with silicon
beads [8]. Examples of this behavior are shown in Fig-
ure 16, where we show the forces on a pair of scatterers
as function of distance and scattering asymmetry θ. For
asymmetric scattering a finite net force remains at the
stable intersection points (red dots) and even for perfect
unidirectional scattering the two particles can be locked
to a stable distance.

Such a behavior is also shown in the dynamical solu-
tion of the asymmetric two-particle problem in Figure 17.
While the asymmetric scattering drives the particles in a
preferred direction, we find stable parallel trajectories for
the two particles. Interestingly, as in the symmetric case,
the particles assume a distance, where they confine much
of the scattered light between them. This is even more
pronounced for larger particle numbers as shown in Fig-
ure 18, where we display such a more complex behavior for
ten beam splitters. There we see that the distances start
to oscillate around a stable point and the system gets un-
stable after a while. Looking again at Figure 16 we can
trace this instability to the fact that the derivative of the
force at the zero point is smaller if α �= β, corresponding
to weaker particle-distance locking.
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Fig. 16. Force on two beam splitters as function of the dis-
tance d for Il = Ir = 0, ζ = 1/9 and φ = 0 with scattering
asymmetries. The blue line corresponds to θ = 0, the red line
to θ = π/3 and the green line to θ = π/4. The solid line shows
the force on the first beam splitter and the dashed line the force
on the second beam splitter. Crossings of the lines with equal
force on the two particles here also occur at nonzero force val-
ues. The red points are stable distances, while the green ones
are not.
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Fig. 17. Trajectories of two beam splitters for Il = Ir = 0,
ζ = 1/9, θ = π/3 and φ = 0 with initial condition d = 0.3λ.
We see that the particles are pushed to the right because of the
scattering asymmetry, but they keep a stable final distance.
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Fig. 18. Trajectories of ten beam splitters for Il = Ir = 0,
ζ = 1

9
, θ = π/5 and φ = 0 with initial condition d1 = d2 =

. . . = d9 = 0.8λ. We see that this configuration is unstable as
the particle trajectories start to cross.
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7 Conclusions and outlook

Using a simple classical scattering model we were able to
study the collective dynamics and self-ordering of illumi-
nated point scatterers coupled to the traveling wave fields
along a tapered optical nano-fiber. This simple approach
can reproduce the dipole-dipole induced self-ordering pre-
dicted for the very weak dipole-dipole coupling limit [17]
as well as stable ordering and strong light confinement
found for a cold gas mean-field approach [12]. Our model
naturally allows to include back-scattering and absorp-
tion and gives an intuitive picture for the underlying mi-
croscopic dynamics. It turns out that interference of the
light scattered by one particle with the light coming from
other particles constitutes the dominant contribution to
the force. In an ideal fiber this interference happens at
all distances and thus mediates interactions throughout
the whole ensemble. For large ensembles this can create
strong instabilities such that the whole lattice structure
disintegrates despite strong damping of particle motion.

While the model is easy to formulate and in principle
allows for an analytic treatment, the explicit expressions
get quite complex and uninstructive even for small particle
numbers. Numerical treatments are, however, straightfor-
ward and possible for very large particle numbers as the
computational effort only slowly grows with particle num-
ber. Here we introduced some external friction force which
allows one to identify stationary solutions, which in an ex-
periment could be provided by Doppler cooling or similar
mechanisms.

In contrast to a prescribed optical lattice the dynamics
are not conservative and the particles will in general not
occupy positions at field maxima corresponding to optical
potential minima, but will order according to zero force
configurations. This leads to unexpected and intriguing
solutions, where the outer particles form a self-organized
resonator confining a great deal of the scattered light
within the structure. This is similar to previous ideas of
particle-based resonators, but happens without the need
to artificially fix the particles [11]. In contrast to the lon-
gitudinal case such a configuration is not intrinsically un-
stable [19] as the destructive interference of scattered and
propagating fields can stabilize the outermost particles.

Let us remark that the presentation and argumen-
tation here was heavily based on the example of a
nano-fiber, but generalization to other 1D cases as hollow
core fibers or other field confining nano-structures are
straightforward. In fact, if the particles are confined in
a 1D geometry at sufficient density, no auxiliary optical
structure is required in principle, as they will also guide
the light. Hence a sufficiently dense elongated atomic en-
semble can be expected to spontaneously crystallize under
coherent transverse illumination forming a self-contained
optical lattice. Interestingly such a lattice has intrinsically

built-in long-range interactions and phononic degrees of
motion, without the need of any optical resonators or
auxiliary particles to mediate interactions. At least qual-
itatively such a behavior can be expected for 2D parti-
cle confinement, where preliminary simulations hint for a
hexagonal order with spatially slowly varying lattice con-
stant. It is not clear how pumping of this kind could be
implemented in 3D but maybe optical gain could pave a
way to a 3D self ordered atom-light crystal.

We thank Arno Rauschenbeutel and Stefan Ostermann for
helpful discussions. This work has been supported by the
Austrian Science Fund (FWF) through SFB Foqus Project
F4006 N16.

References

1. I. Deutsch, R. Spreeuw, S. Rolston, W. Phillips, Phys.
Rev. A 52, 1394 (1995)
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